Cargando…
Application of Deep Reinforcement Learning to NS-SHAFT Game Signal Control
Reinforcement learning (RL) with both exploration and exploit abilities is applied to games to demonstrate that it can surpass human performance. This paper mainly applies Deep Q-Network (DQN), which combines reinforcement learning and deep learning to the real-time action response of NS-SHAFT game...
Autores principales: | Chang, Ching-Lung, Chen, Shuo-Tsung, Lin, Po-Yu, Chang, Chuan-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317465/ https://www.ncbi.nlm.nih.gov/pubmed/35890943 http://dx.doi.org/10.3390/s22145265 |
Ejemplares similares
-
Application of Machine Learning in Air Hockey Interactive Control System
por: Chang, Ching-Lung, et al.
Publicado: (2020) -
Hands-on deep learning for games: leverage the power of neural networks and reinforcement learning to build intelligent games
por: Lanham, Micheal
Publicado: (2019) -
Hands-On Reinforcement Learning for Games
por: Lanham, Micheal
Publicado: (2020) -
Pursuit and Evasion Strategy of a Differential Game Based on Deep Reinforcement Learning
por: Xu, Can, et al.
Publicado: (2022) -
The Design of Sports Games under the Internet of Things Fitness by Deep Reinforcement Learning
por: Wang, Xiangyu, et al.
Publicado: (2022)