Cargando…
Densely Connected Neural Networks for Nonlinear Regression
Densely connected convolutional networks (DenseNet) behave well in image processing. However, for regression tasks, convolutional DenseNet may lose essential information from independent input features. To tackle this issue, we propose a novel DenseNet regression model where convolution and pooling...
Autores principales: | Jiang, Chao, Jiang, Canchen, Chen, Dongwei, Hu, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317522/ https://www.ncbi.nlm.nih.gov/pubmed/35885098 http://dx.doi.org/10.3390/e24070876 |
Ejemplares similares
-
Deep Residual Learning for Nonlinear Regression
por: Chen, Dongwei, et al.
Publicado: (2020) -
Attention-Guided Network with Densely Connected Convolution for Skin Lesion Segmentation
por: Tao, Shengxin, et al.
Publicado: (2021) -
Multiscale Aggregate Networks with Dense Connections for Crowd Counting
por: Li, Pengfei, et al.
Publicado: (2021) -
Cerebral Micro-Bleeding Detection Based on Densely Connected Neural Network
por: Wang, Shuihua, et al.
Publicado: (2019) -
Tumor Segmentation in Breast Ultrasound Image by Means of Res Path Combined with Dense Connection Neural Network
por: Yu, Kailuo, et al.
Publicado: (2021)