Cargando…
Unsupervised Plot-Scale LAI Phenotyping via UAV-Based Imaging, Modelling, and Machine Learning
High-throughput phenotyping has become the frontier to accelerate breeding through linking genetics to crop growth estimation, which requires accurate estimation of leaf area index (LAI). This study developed a hybrid method to train the random forest regression (RFR) models with synthetic datasets...
Autores principales: | Chen, Qiaomin, Zheng, Bangyou, Chenu, Karine, Hu, Pengcheng, Chapman, Scott C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317541/ https://www.ncbi.nlm.nih.gov/pubmed/35935677 http://dx.doi.org/10.34133/2022/9768253 |
Ejemplares similares
-
A Generic Model to Estimate Wheat LAI over Growing Season Regardless of the Soil-Type Background
por: Chen, Qiaomin, et al.
Publicado: (2023) -
Projected impact of future climate on water-stress patterns across the Australian wheatbelt
por: Watson, James, et al.
Publicado: (2017) -
Integrating a crop growth model and radiative transfer model to improve estimation of crop traits based on deep learning
por: Chen, Qiaomin, et al.
Publicado: (2022) -
Combining Crop Growth Modeling and Statistical Genetic Modeling to Evaluate Phenotyping Strategies
por: Bustos-Korts, Daniela, et al.
Publicado: (2019) -
Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features
por: Sun, Xinkai, et al.
Publicado: (2023)