Cargando…
Forecasting the Post-Pandemic Effects of the SARS-CoV-2 Virus Using the Bullwhip Phenomenon Alongside Use of Nanosensors for Disease Containment and Cure
The COVID-19 pandemic has the tendency to affect various organizational paradigm alterations, which civilization hasyet to fully comprehend. Personal to professional, individual to corporate, and across most industries, the spectrum of transformations is vast. Economically, the globe has never been...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317545/ https://www.ncbi.nlm.nih.gov/pubmed/35888544 http://dx.doi.org/10.3390/ma15145078 |
_version_ | 1784755083412504576 |
---|---|
author | Alqahtani, Mohammed S. Abbas, Mohamed Abdulmuqeet, Mohammed Alqahtani, Abdullah S. Alshahrani, Mohammad Y. Alsabaani, Abdullah Ramalingam, Murugan |
author_facet | Alqahtani, Mohammed S. Abbas, Mohamed Abdulmuqeet, Mohammed Alqahtani, Abdullah S. Alshahrani, Mohammad Y. Alsabaani, Abdullah Ramalingam, Murugan |
author_sort | Alqahtani, Mohammed S. |
collection | PubMed |
description | The COVID-19 pandemic has the tendency to affect various organizational paradigm alterations, which civilization hasyet to fully comprehend. Personal to professional, individual to corporate, and across most industries, the spectrum of transformations is vast. Economically, the globe has never been more intertwined, and it has never been subjected to such widespread disruption. While many people have felt and acknowledged the pandemic’s short-term repercussions, the resultant paradigm alterations will certainly have long-term consequences with an unknown range and severity. This review paper aims at acknowledging various approaches for the prevention, detection, and diagnosis of the SARS-CoV-2 virus using nanomaterials as a base material. A nanostructure is a material classification based on dimensionality, in proportion to the characteristic diameter and surface area. Nanoparticles, quantum dots, nanowires (NW), carbon nanotubes (CNT), thin films, and nanocomposites are some examples of various dimensions, each acting as a single unit, in terms of transport capacities. Top-down and bottom-up techniques are used to fabricate nanomaterials. The large surface-to-volume ratio of nanomaterials allows one to create extremely sensitive charge or field sensors (electrical sensors, chemical sensors, explosives detection, optical sensors, and gas sensing applications). Nanowires have potential applications in information and communication technologies, low-energy lightning, and medical sensors. Carbon nanotubes have the best environmental stability, electrical characteristics, and surface-to-volume ratio of any nanomaterial, making them ideal for bio-sensing applications. Traditional commercially available techniques have focused on clinical manifestations, as well as molecular and serological detection equipment that can identify the SARS-CoV-2 virus. Scientists are expressing a lot of interest in developing a portable and easy-to-use COVID-19 detection tool. Several unique methodologies and approaches are being investigated as feasible advanced systems capable of meeting the demands. This review article attempts to emphasize the pandemic’s aftereffects, utilising the notion of the bullwhip phenomenon’s short-term and long-term effects, and it specifies the use of nanomaterials and nanosensors for detection, prevention, diagnosis, and therapy in connection to the SARS-CoV-2. |
format | Online Article Text |
id | pubmed-9317545 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93175452022-07-27 Forecasting the Post-Pandemic Effects of the SARS-CoV-2 Virus Using the Bullwhip Phenomenon Alongside Use of Nanosensors for Disease Containment and Cure Alqahtani, Mohammed S. Abbas, Mohamed Abdulmuqeet, Mohammed Alqahtani, Abdullah S. Alshahrani, Mohammad Y. Alsabaani, Abdullah Ramalingam, Murugan Materials (Basel) Review The COVID-19 pandemic has the tendency to affect various organizational paradigm alterations, which civilization hasyet to fully comprehend. Personal to professional, individual to corporate, and across most industries, the spectrum of transformations is vast. Economically, the globe has never been more intertwined, and it has never been subjected to such widespread disruption. While many people have felt and acknowledged the pandemic’s short-term repercussions, the resultant paradigm alterations will certainly have long-term consequences with an unknown range and severity. This review paper aims at acknowledging various approaches for the prevention, detection, and diagnosis of the SARS-CoV-2 virus using nanomaterials as a base material. A nanostructure is a material classification based on dimensionality, in proportion to the characteristic diameter and surface area. Nanoparticles, quantum dots, nanowires (NW), carbon nanotubes (CNT), thin films, and nanocomposites are some examples of various dimensions, each acting as a single unit, in terms of transport capacities. Top-down and bottom-up techniques are used to fabricate nanomaterials. The large surface-to-volume ratio of nanomaterials allows one to create extremely sensitive charge or field sensors (electrical sensors, chemical sensors, explosives detection, optical sensors, and gas sensing applications). Nanowires have potential applications in information and communication technologies, low-energy lightning, and medical sensors. Carbon nanotubes have the best environmental stability, electrical characteristics, and surface-to-volume ratio of any nanomaterial, making them ideal for bio-sensing applications. Traditional commercially available techniques have focused on clinical manifestations, as well as molecular and serological detection equipment that can identify the SARS-CoV-2 virus. Scientists are expressing a lot of interest in developing a portable and easy-to-use COVID-19 detection tool. Several unique methodologies and approaches are being investigated as feasible advanced systems capable of meeting the demands. This review article attempts to emphasize the pandemic’s aftereffects, utilising the notion of the bullwhip phenomenon’s short-term and long-term effects, and it specifies the use of nanomaterials and nanosensors for detection, prevention, diagnosis, and therapy in connection to the SARS-CoV-2. MDPI 2022-07-21 /pmc/articles/PMC9317545/ /pubmed/35888544 http://dx.doi.org/10.3390/ma15145078 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Alqahtani, Mohammed S. Abbas, Mohamed Abdulmuqeet, Mohammed Alqahtani, Abdullah S. Alshahrani, Mohammad Y. Alsabaani, Abdullah Ramalingam, Murugan Forecasting the Post-Pandemic Effects of the SARS-CoV-2 Virus Using the Bullwhip Phenomenon Alongside Use of Nanosensors for Disease Containment and Cure |
title | Forecasting the Post-Pandemic Effects of the SARS-CoV-2 Virus Using the Bullwhip Phenomenon Alongside Use of Nanosensors for Disease Containment and Cure |
title_full | Forecasting the Post-Pandemic Effects of the SARS-CoV-2 Virus Using the Bullwhip Phenomenon Alongside Use of Nanosensors for Disease Containment and Cure |
title_fullStr | Forecasting the Post-Pandemic Effects of the SARS-CoV-2 Virus Using the Bullwhip Phenomenon Alongside Use of Nanosensors for Disease Containment and Cure |
title_full_unstemmed | Forecasting the Post-Pandemic Effects of the SARS-CoV-2 Virus Using the Bullwhip Phenomenon Alongside Use of Nanosensors for Disease Containment and Cure |
title_short | Forecasting the Post-Pandemic Effects of the SARS-CoV-2 Virus Using the Bullwhip Phenomenon Alongside Use of Nanosensors for Disease Containment and Cure |
title_sort | forecasting the post-pandemic effects of the sars-cov-2 virus using the bullwhip phenomenon alongside use of nanosensors for disease containment and cure |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317545/ https://www.ncbi.nlm.nih.gov/pubmed/35888544 http://dx.doi.org/10.3390/ma15145078 |
work_keys_str_mv | AT alqahtanimohammeds forecastingthepostpandemiceffectsofthesarscov2virususingthebullwhipphenomenonalongsideuseofnanosensorsfordiseasecontainmentandcure AT abbasmohamed forecastingthepostpandemiceffectsofthesarscov2virususingthebullwhipphenomenonalongsideuseofnanosensorsfordiseasecontainmentandcure AT abdulmuqeetmohammed forecastingthepostpandemiceffectsofthesarscov2virususingthebullwhipphenomenonalongsideuseofnanosensorsfordiseasecontainmentandcure AT alqahtaniabdullahs forecastingthepostpandemiceffectsofthesarscov2virususingthebullwhipphenomenonalongsideuseofnanosensorsfordiseasecontainmentandcure AT alshahranimohammady forecastingthepostpandemiceffectsofthesarscov2virususingthebullwhipphenomenonalongsideuseofnanosensorsfordiseasecontainmentandcure AT alsabaaniabdullah forecastingthepostpandemiceffectsofthesarscov2virususingthebullwhipphenomenonalongsideuseofnanosensorsfordiseasecontainmentandcure AT ramalingammurugan forecastingthepostpandemiceffectsofthesarscov2virususingthebullwhipphenomenonalongsideuseofnanosensorsfordiseasecontainmentandcure |