Cargando…
Attention-Shared Multi-Agent Actor–Critic-Based Deep Reinforcement Learning Approach for Mobile Charging Dynamic Scheduling in Wireless Rechargeable Sensor Networks
The breakthrough of wireless energy transmission (WET) technology has greatly promoted the wireless rechargeable sensor networks (WRSNs). A promising method to overcome the energy constraint problem in WRSNs is mobile charging by employing a mobile charger to charge sensors via WET. Recently, more a...
Autores principales: | Jiang, Chengpeng, Wang, Ziyang, Chen, Shuai, Li, Jinglin, Wang, Haoran, Xiang, Jinwei, Xiao, Wendong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317597/ https://www.ncbi.nlm.nih.gov/pubmed/35885188 http://dx.doi.org/10.3390/e24070965 |
Ejemplares similares
-
Recharging Schedule for Mitigating Data Loss in Wireless Rechargeable Sensor Network
por: Liu, Haolin, et al.
Publicado: (2018) -
Improved Deep Q-Network for User-Side Battery Energy Storage Charging and Discharging Strategy in Industrial Parks
por: Chen, Shuai, et al.
Publicado: (2021) -
Mobile Charging Strategy for Wireless Rechargeable Sensor Networks
por: Chen, Tzung-Shi, et al.
Publicado: (2022) -
RCSS: A Real-Time On-Demand Charging Scheduling Scheme for Wireless Rechargeable Sensor Networks
por: Zhong, Ping, et al.
Publicado: (2018) -
Adaptive Dynamic Programming-Based Multi-Sensor Scheduling for Collaborative Target Tracking in Energy Harvesting Wireless Sensor Networks
por: Liu, Fen, et al.
Publicado: (2018)