Cargando…
Imputation of Missing Values for Multi-Biospecimen Metabolomics Studies: Bias and Effects on Statistical Validity
The analysis of high-throughput metabolomics mass spectrometry data across multiple biological sample types (biospecimens) poses challenges due to missing data. During differential abundance analysis, dropping samples with missing values can lead to severe loss of data as well as biased results in g...
Autores principales: | Wilson, Machelle D., Ponzini, Matthew D., Taylor, Sandra L., Kim, Kyoungmi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317643/ https://www.ncbi.nlm.nih.gov/pubmed/35888795 http://dx.doi.org/10.3390/metabo12070671 |
Ejemplares similares
-
Multi-View Variational Autoencoder for Missing Value Imputation in Untargeted Metabolomics
por: Zhao, Chen, et al.
Publicado: (2023) -
A Workflow for Missing Values Imputation of Untargeted Metabolomics Data
por: Faquih, Tariq, et al.
Publicado: (2020) -
Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data
por: Wei, Runmin, et al.
Publicado: (2018) -
The importance of batch sensitization in missing value imputation
por: Hui, Harvard Wai Hann, et al.
Publicado: (2023) -
NMF-Based Approach for Missing Values Imputation of Mass Spectrometry Metabolomics Data
por: Xu, Jingjing, et al.
Publicado: (2021)