Cargando…
FedHGCDroid: An Adaptive Multi-Dimensional Federated Learning for Privacy-Preserving Android Malware Classification
With the popularity of Android and its open source, the Android platform has become an attractive target for hackers, and the detection and classification of malware has become a research hotspot. Existing malware classification methods rely on complex manual operation or large-volume high-quality t...
Autores principales: | Jiang, Changnan, Yin, Kanglong, Xia, Chunhe, Huang, Weidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317647/ https://www.ncbi.nlm.nih.gov/pubmed/35885142 http://dx.doi.org/10.3390/e24070919 |
Ejemplares similares
-
FedDroidMeter: A Privacy Risk Evaluator for FL-Based Android Malware Classification Systems
por: Jiang, Changnan, et al.
Publicado: (2023) -
An Analysis of Android Malware Classification Services
por: Rashed, Mohammed, et al.
Publicado: (2021) -
Android malware and analysis
por: Dunham, Ken
Publicado: (2014) -
Deep Feature Extraction and Classification of Android Malware Images
por: Singh, Jaiteg, et al.
Publicado: (2020) -
Malware detection in Android phones
por: Malik, Sapna
Publicado: (2017)