Cargando…
Encoder-Weighted W-Net for Unsupervised Segmentation of Cervix Region in Colposcopy Images
SIMPLE SUMMARY: The cervix region segmentation significantly affects the accuracy of diagnosis when analyzing colposcopy. Detecting the cervix region requires manual, intensive, and time-consuming labor from a trained gynecologist. In this paper, we propose a deep learning-based automatic cervix reg...
Autores principales: | Park, Jinhee, Yang, Hyunmo, Roh, Hyun-Jin, Jung, Woonggyu, Jang, Gil-Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317688/ https://www.ncbi.nlm.nih.gov/pubmed/35884460 http://dx.doi.org/10.3390/cancers14143400 |
Ejemplares similares
-
Deep Learning-Based Glaucoma Screening Using Regional RNFL Thickness in Fundus Photography
por: Yang, Hyunmo, et al.
Publicado: (2022) -
Quantitative Screening of Cervical Cancers for Low-Resource Settings: Pilot Study of Smartphone-Based Endoscopic Visual Inspection After Acetic Acid Using Machine Learning Techniques
por: Bae, Jung Kweon, et al.
Publicado: (2020) -
Office Cervicoscopy versus Stationary Colposcopy in Suspicious Cervix: A Randomized Controlled Trial
por: Darwish, Atef Mohammad, et al.
Publicado: (2019) -
Retraction: Office Cervicoscopy versus Stationary Colposcopy in Suspicious Cervix: A Randomized Controlled Trial
Publicado: (2020) -
Cervical Transformation Zone Segmentation and Classification based on Improved Inception-ResNet-V2 Using Colposcopy Images
por: Dash, Srikanta, et al.
Publicado: (2023)