Cargando…
A Dynamically Consistent Nonstandard Difference Scheme for a Discrete-Time Immunogenic Tumors Model
This manuscript deals with the qualitative study of certain properties of an immunogenic tumors model. Mainly, we obtain a dynamically consistent discrete-time immunogenic tumors model using a nonstandard difference scheme. The existence of fixed points and their stability are discussed. It is shown...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317731/ https://www.ncbi.nlm.nih.gov/pubmed/35885172 http://dx.doi.org/10.3390/e24070949 |
Sumario: | This manuscript deals with the qualitative study of certain properties of an immunogenic tumors model. Mainly, we obtain a dynamically consistent discrete-time immunogenic tumors model using a nonstandard difference scheme. The existence of fixed points and their stability are discussed. It is shown that a continuous system experiences Hopf bifurcation at one and only one positive fixed point, whereas its discrete-time counterpart experiences Neimark–Sacker bifurcation at one and only one positive fixed point. It is shown that there is no chance of period-doubling bifurcation in our discrete-time system. Additionally, numerical simulations are carried out in support of our theoretical discussion. |
---|