Cargando…
On-Device IoT-Based Predictive Maintenance Analytics Model: Comparing TinyLSTM and TinyModel from Edge Impulse
A precise prediction of the health status of industrial equipment is of significant importance to determine its reliability and lifespan. This prediction provides users information that is useful in determining when to service, repair, or replace the unhealthy equipment’s components. In the last dec...
Autores principales: | Mihigo, Irene Niyonambaza, Zennaro, Marco, Uwitonze, Alfred, Rwigema, James, Rovai, Marcelo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317779/ https://www.ncbi.nlm.nih.gov/pubmed/35890854 http://dx.doi.org/10.3390/s22145174 |
Ejemplares similares
-
TinyML: Enabling of Inference Deep Learning Models on Ultra-Low-Power IoT Edge Devices for AI Applications
por: Alajlan, Norah N., et al.
Publicado: (2022) -
An Evolving TinyML Compression Algorithm for IoT Environments Based on Data Eccentricity
por: Signoretti, Gabriel, et al.
Publicado: (2021) -
TinyML
por: Warden, Pete
Publicado: (2019) -
Tiny homes /
Publicado: (2018) -
Mighty tiny
por: Hall, Kathleen B.
Publicado: (2015)