Cargando…
Development of a Soil Organic Matter Content Prediction Model Based on Supervised Learning Using Vis-NIR/SWIR Spectroscopy
In the current scenario of anthropogenic climate change, carbon credit security is becoming increasingly important worldwide. Topsoil is the terrestrial ecosystem component with the largest carbon sequestration capacity. Since soil organic matter (SOM), which is mostly composed of organic carbon, an...
Autores principales: | Kim, Min-Jee, Lee, Hye-In, Choi, Jae-Hyun, Lim, Kyoung Jae, Mo, Changyeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317811/ https://www.ncbi.nlm.nih.gov/pubmed/35890809 http://dx.doi.org/10.3390/s22145129 |
Ejemplares similares
-
VIS-NIR, SWIR and LWIR Imagery for Estimation of Ground Bearing Capacity
por: Fernández, Roemi, et al.
Publicado: (2015) -
Vis-NIR and SWIR hyperspectral imaging method to detect bruises in pomegranate fruit
por: Okere, Emmanuel Ekene, et al.
Publicado: (2023) -
Predicting Key Agronomic Soil Properties with UV-Vis Fluorescence Measurements Combined with Vis-NIR-SWIR Reflectance Spectroscopy: A Farm-Scale Study in a Mediterranean Viticultural Agroecosystem
por: Vaudour, Emmanuelle, et al.
Publicado: (2018) -
Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy
por: Ding, Jianli, et al.
Publicado: (2018) -
Chemometric Analysis for the Prediction of Biochemical Compounds in Leaves Using UV-VIS-NIR-SWIR Hyperspectroscopy
por: Falcioni, Renan, et al.
Publicado: (2023)