Cargando…
Low-Loss Dual-Band Transparency Metamaterial with Toroidal Dipole
In this paper, a low-loss toroidal dipole metamaterial composed of four metal split ring resonators is proposed and verified at microwave range. Dual-band Fano resonances could be excited by normal incident electromagnetic waves at 6 GHz and 7.23 GHz. Analysis of the current distribution at the reso...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317833/ https://www.ncbi.nlm.nih.gov/pubmed/35888479 http://dx.doi.org/10.3390/ma15145013 |
Sumario: | In this paper, a low-loss toroidal dipole metamaterial composed of four metal split ring resonators is proposed and verified at microwave range. Dual-band Fano resonances could be excited by normal incident electromagnetic waves at 6 GHz and 7.23 GHz. Analysis of the current distribution at the resonance frequency and the scattered power of multipoles shows that both Fano resonances derive from the predominant novel toroidal dipole. The simulation results exhibit that the sensitivity to refractive index of the analyte is 1.56 GHz/RIU and 1.8 GHz/RIU. Meanwhile, the group delay at two Fano peaks can reach to 11.38 ns and 12.85 ns, which means the presented toroidal metamaterial has significant slow light effects. The proposed dual-band toroidal dipole metamaterial may offer a new path for designing ultra-sensitive sensors, filters, modulators, slow light devices, and so on. |
---|