Cargando…
3D Spheroid Cultures of Stem Cells and Exosome Applications for Cartilage Repair
Cartilage is a connective tissue that constitutes the structure of the body and consists of chondrocytes that produce considerable collagenous extracellular matrix and plentiful ground substances, such as proteoglycan and elastin fibers. Self-repair is difficult when the cartilage is damaged because...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317836/ https://www.ncbi.nlm.nih.gov/pubmed/35888029 http://dx.doi.org/10.3390/life12070939 |
_version_ | 1784755154172510208 |
---|---|
author | Lee, Seung Yeon Lee, Jin Woo |
author_facet | Lee, Seung Yeon Lee, Jin Woo |
author_sort | Lee, Seung Yeon |
collection | PubMed |
description | Cartilage is a connective tissue that constitutes the structure of the body and consists of chondrocytes that produce considerable collagenous extracellular matrix and plentiful ground substances, such as proteoglycan and elastin fibers. Self-repair is difficult when the cartilage is damaged because of insufficient blood supply, low cellularity, and limited progenitor cell numbers. Therefore, three-dimensional (3D) culture systems, including pellet culture, hanging droplets, liquid overlays, self-injury, and spinner culture, have attracted attention. In particular, 3D spheroid culture strategies can enhance the yield of exosome production of mesenchymal stem cells (MSCs) when compared to two-dimensional culture, and can improve cellular restorative function by enhancing the paracrine effects of MSCs. Exosomes are membrane-bound extracellular vesicles, which are intercellular communication systems that carry RNAs and proteins. Information transfer affects the phenotype of recipient cells. MSC-derived exosomes can facilitate cartilage repair by promoting chondrogenic differentiation and proliferation. In this article, we reviewed recent major advances in the application of 3D culture techniques, cartilage regeneration with stem cells using 3D spheroid culture system, the effect of exosomes on chondrogenic differentiation, and chondrogenic-specific markers related to stem cell derived exosomes. Furthermore, the utilization of MSC-derived exosomes to enhance chondrogenic differentiation for osteoarthritis is discussed. If more mechanistic studies at the molecular level are conducted, MSC-spheroid-derived exosomes will supply a better therapeutic option to improve osteoarthritis. |
format | Online Article Text |
id | pubmed-9317836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93178362022-07-27 3D Spheroid Cultures of Stem Cells and Exosome Applications for Cartilage Repair Lee, Seung Yeon Lee, Jin Woo Life (Basel) Review Cartilage is a connective tissue that constitutes the structure of the body and consists of chondrocytes that produce considerable collagenous extracellular matrix and plentiful ground substances, such as proteoglycan and elastin fibers. Self-repair is difficult when the cartilage is damaged because of insufficient blood supply, low cellularity, and limited progenitor cell numbers. Therefore, three-dimensional (3D) culture systems, including pellet culture, hanging droplets, liquid overlays, self-injury, and spinner culture, have attracted attention. In particular, 3D spheroid culture strategies can enhance the yield of exosome production of mesenchymal stem cells (MSCs) when compared to two-dimensional culture, and can improve cellular restorative function by enhancing the paracrine effects of MSCs. Exosomes are membrane-bound extracellular vesicles, which are intercellular communication systems that carry RNAs and proteins. Information transfer affects the phenotype of recipient cells. MSC-derived exosomes can facilitate cartilage repair by promoting chondrogenic differentiation and proliferation. In this article, we reviewed recent major advances in the application of 3D culture techniques, cartilage regeneration with stem cells using 3D spheroid culture system, the effect of exosomes on chondrogenic differentiation, and chondrogenic-specific markers related to stem cell derived exosomes. Furthermore, the utilization of MSC-derived exosomes to enhance chondrogenic differentiation for osteoarthritis is discussed. If more mechanistic studies at the molecular level are conducted, MSC-spheroid-derived exosomes will supply a better therapeutic option to improve osteoarthritis. MDPI 2022-06-22 /pmc/articles/PMC9317836/ /pubmed/35888029 http://dx.doi.org/10.3390/life12070939 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Lee, Seung Yeon Lee, Jin Woo 3D Spheroid Cultures of Stem Cells and Exosome Applications for Cartilage Repair |
title | 3D Spheroid Cultures of Stem Cells and Exosome Applications for Cartilage Repair |
title_full | 3D Spheroid Cultures of Stem Cells and Exosome Applications for Cartilage Repair |
title_fullStr | 3D Spheroid Cultures of Stem Cells and Exosome Applications for Cartilage Repair |
title_full_unstemmed | 3D Spheroid Cultures of Stem Cells and Exosome Applications for Cartilage Repair |
title_short | 3D Spheroid Cultures of Stem Cells and Exosome Applications for Cartilage Repair |
title_sort | 3d spheroid cultures of stem cells and exosome applications for cartilage repair |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317836/ https://www.ncbi.nlm.nih.gov/pubmed/35888029 http://dx.doi.org/10.3390/life12070939 |
work_keys_str_mv | AT leeseungyeon 3dspheroidculturesofstemcellsandexosomeapplicationsforcartilagerepair AT leejinwoo 3dspheroidculturesofstemcellsandexosomeapplicationsforcartilagerepair |