Cargando…
Are We There Yet? The Value of Deep Learning in a Multicenter Setting for Response Prediction of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy
This retrospective study aims to evaluate the generalizability of a promising state-of-the-art multitask deep learning (DL) model for predicting the response of locally advanced rectal cancer (LARC) to neoadjuvant chemoradiotherapy (nCRT) using a multicenter dataset. To this end, we retrained and va...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317842/ https://www.ncbi.nlm.nih.gov/pubmed/35885506 http://dx.doi.org/10.3390/diagnostics12071601 |
_version_ | 1784755155690848256 |
---|---|
author | Wichtmann, Barbara D. Albert, Steffen Zhao, Wenzhao Maurer, Angelika Rödel, Claus Hofheinz, Ralf-Dieter Hesser, Jürgen Zöllner, Frank G. Attenberger, Ulrike I. |
author_facet | Wichtmann, Barbara D. Albert, Steffen Zhao, Wenzhao Maurer, Angelika Rödel, Claus Hofheinz, Ralf-Dieter Hesser, Jürgen Zöllner, Frank G. Attenberger, Ulrike I. |
author_sort | Wichtmann, Barbara D. |
collection | PubMed |
description | This retrospective study aims to evaluate the generalizability of a promising state-of-the-art multitask deep learning (DL) model for predicting the response of locally advanced rectal cancer (LARC) to neoadjuvant chemoradiotherapy (nCRT) using a multicenter dataset. To this end, we retrained and validated a Siamese network with two U-Nets joined at multiple layers using pre- and post-therapeutic T2-weighted (T2w), diffusion-weighted (DW) images and apparent diffusion coefficient (ADC) maps of 83 LARC patients acquired under study conditions at four different medical centers. To assess the predictive performance of the model, the trained network was then applied to an external clinical routine dataset of 46 LARC patients imaged without study conditions. The training and test datasets differed significantly in terms of their composition, e.g., T-/N-staging, the time interval between initial staging/nCRT/re-staging and surgery, as well as with respect to acquisition parameters, such as resolution, echo/repetition time, flip angle and field strength. We found that even after dedicated data pre-processing, the predictive performance dropped significantly in this multicenter setting compared to a previously published single- or two-center setting. Testing the network on the external clinical routine dataset yielded an area under the receiver operating characteristic curve of 0.54 (95% confidence interval [CI]: 0.41, 0.65), when using only pre- and post-therapeutic T2w images as input, and 0.60 (95% CI: 0.48, 0.71), when using the combination of pre- and post-therapeutic T2w, DW images, and ADC maps as input. Our study highlights the importance of data quality and harmonization in clinical trials using machine learning. Only in a joint, cross-center effort, involving a multidisciplinary team can we generate large enough curated and annotated datasets and develop the necessary pre-processing pipelines for data harmonization to successfully apply DL models clinically. |
format | Online Article Text |
id | pubmed-9317842 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93178422022-07-27 Are We There Yet? The Value of Deep Learning in a Multicenter Setting for Response Prediction of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy Wichtmann, Barbara D. Albert, Steffen Zhao, Wenzhao Maurer, Angelika Rödel, Claus Hofheinz, Ralf-Dieter Hesser, Jürgen Zöllner, Frank G. Attenberger, Ulrike I. Diagnostics (Basel) Article This retrospective study aims to evaluate the generalizability of a promising state-of-the-art multitask deep learning (DL) model for predicting the response of locally advanced rectal cancer (LARC) to neoadjuvant chemoradiotherapy (nCRT) using a multicenter dataset. To this end, we retrained and validated a Siamese network with two U-Nets joined at multiple layers using pre- and post-therapeutic T2-weighted (T2w), diffusion-weighted (DW) images and apparent diffusion coefficient (ADC) maps of 83 LARC patients acquired under study conditions at four different medical centers. To assess the predictive performance of the model, the trained network was then applied to an external clinical routine dataset of 46 LARC patients imaged without study conditions. The training and test datasets differed significantly in terms of their composition, e.g., T-/N-staging, the time interval between initial staging/nCRT/re-staging and surgery, as well as with respect to acquisition parameters, such as resolution, echo/repetition time, flip angle and field strength. We found that even after dedicated data pre-processing, the predictive performance dropped significantly in this multicenter setting compared to a previously published single- or two-center setting. Testing the network on the external clinical routine dataset yielded an area under the receiver operating characteristic curve of 0.54 (95% confidence interval [CI]: 0.41, 0.65), when using only pre- and post-therapeutic T2w images as input, and 0.60 (95% CI: 0.48, 0.71), when using the combination of pre- and post-therapeutic T2w, DW images, and ADC maps as input. Our study highlights the importance of data quality and harmonization in clinical trials using machine learning. Only in a joint, cross-center effort, involving a multidisciplinary team can we generate large enough curated and annotated datasets and develop the necessary pre-processing pipelines for data harmonization to successfully apply DL models clinically. MDPI 2022-06-30 /pmc/articles/PMC9317842/ /pubmed/35885506 http://dx.doi.org/10.3390/diagnostics12071601 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wichtmann, Barbara D. Albert, Steffen Zhao, Wenzhao Maurer, Angelika Rödel, Claus Hofheinz, Ralf-Dieter Hesser, Jürgen Zöllner, Frank G. Attenberger, Ulrike I. Are We There Yet? The Value of Deep Learning in a Multicenter Setting for Response Prediction of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy |
title | Are We There Yet? The Value of Deep Learning in a Multicenter Setting for Response Prediction of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy |
title_full | Are We There Yet? The Value of Deep Learning in a Multicenter Setting for Response Prediction of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy |
title_fullStr | Are We There Yet? The Value of Deep Learning in a Multicenter Setting for Response Prediction of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy |
title_full_unstemmed | Are We There Yet? The Value of Deep Learning in a Multicenter Setting for Response Prediction of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy |
title_short | Are We There Yet? The Value of Deep Learning in a Multicenter Setting for Response Prediction of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy |
title_sort | are we there yet? the value of deep learning in a multicenter setting for response prediction of locally advanced rectal cancer to neoadjuvant chemoradiotherapy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317842/ https://www.ncbi.nlm.nih.gov/pubmed/35885506 http://dx.doi.org/10.3390/diagnostics12071601 |
work_keys_str_mv | AT wichtmannbarbarad arewethereyetthevalueofdeeplearninginamulticentersettingforresponsepredictionoflocallyadvancedrectalcancertoneoadjuvantchemoradiotherapy AT albertsteffen arewethereyetthevalueofdeeplearninginamulticentersettingforresponsepredictionoflocallyadvancedrectalcancertoneoadjuvantchemoradiotherapy AT zhaowenzhao arewethereyetthevalueofdeeplearninginamulticentersettingforresponsepredictionoflocallyadvancedrectalcancertoneoadjuvantchemoradiotherapy AT maurerangelika arewethereyetthevalueofdeeplearninginamulticentersettingforresponsepredictionoflocallyadvancedrectalcancertoneoadjuvantchemoradiotherapy AT rodelclaus arewethereyetthevalueofdeeplearninginamulticentersettingforresponsepredictionoflocallyadvancedrectalcancertoneoadjuvantchemoradiotherapy AT hofheinzralfdieter arewethereyetthevalueofdeeplearninginamulticentersettingforresponsepredictionoflocallyadvancedrectalcancertoneoadjuvantchemoradiotherapy AT hesserjurgen arewethereyetthevalueofdeeplearninginamulticentersettingforresponsepredictionoflocallyadvancedrectalcancertoneoadjuvantchemoradiotherapy AT zollnerfrankg arewethereyetthevalueofdeeplearninginamulticentersettingforresponsepredictionoflocallyadvancedrectalcancertoneoadjuvantchemoradiotherapy AT attenbergerulrikei arewethereyetthevalueofdeeplearninginamulticentersettingforresponsepredictionoflocallyadvancedrectalcancertoneoadjuvantchemoradiotherapy |