Cargando…
Are We There Yet? The Value of Deep Learning in a Multicenter Setting for Response Prediction of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy
This retrospective study aims to evaluate the generalizability of a promising state-of-the-art multitask deep learning (DL) model for predicting the response of locally advanced rectal cancer (LARC) to neoadjuvant chemoradiotherapy (nCRT) using a multicenter dataset. To this end, we retrained and va...
Autores principales: | Wichtmann, Barbara D., Albert, Steffen, Zhao, Wenzhao, Maurer, Angelika, Rödel, Claus, Hofheinz, Ralf-Dieter, Hesser, Jürgen, Zöllner, Frank G., Attenberger, Ulrike I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317842/ https://www.ncbi.nlm.nih.gov/pubmed/35885506 http://dx.doi.org/10.3390/diagnostics12071601 |
Ejemplares similares
-
Development and Validation of a Predictive Model for Toxicity of Neoadjuvant Chemoradiotherapy in Rectal Cancer in the CAO/ARO/AIO-04 Phase III Trial
por: Diefenhardt, Markus, et al.
Publicado: (2022) -
Predicting response to neoadjuvant chemoradiotherapy in rectal
cancer: from biomarkers to tumor models
por: Li, Moying, et al.
Publicado: (2022) -
ACO/ARO/AIO-21 - Capecitabine-based chemoradiotherapy in combination with the IL-1 receptor antagonist anakinra for rectal cancer Patients: A phase I trial of the German rectal cancer study group
por: Fleischmann, Maximilian, et al.
Publicado: (2022) -
Overall Survival After Treatment Failure Among Patients With Rectal Cancer
por: Diefenhardt, Markus, et al.
Publicado: (2023) -
Total Neoadjuvant Therapy for Rectal Cancer in the CAO/ARO/AIO-12 Randomized Phase 2 Trial: Early Surrogate Endpoints Revisited
por: Diefenhardt, Markus, et al.
Publicado: (2022)