Cargando…
Magnetic Evaluation of Heat-Resistant Martensitic Steel Subjected to Microstructure Degradation
The present paper investigates the use of the magnetic hysteresis loop technique to nondestructively evaluate microstructural degradation in heat-resistant martensitic (HRM) steels. The degradation impairs the safe operation of thermal power plants and it is thus essential to periodically assess it...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317982/ https://www.ncbi.nlm.nih.gov/pubmed/35888331 http://dx.doi.org/10.3390/ma15144865 |
_version_ | 1784755187070533632 |
---|---|
author | Li, Yi Sun, Chao Liu, Kai Xu, Tong He, Binbin |
author_facet | Li, Yi Sun, Chao Liu, Kai Xu, Tong He, Binbin |
author_sort | Li, Yi |
collection | PubMed |
description | The present paper investigates the use of the magnetic hysteresis loop technique to nondestructively evaluate microstructural degradation in heat-resistant martensitic (HRM) steels. The degradation impairs the safe operation of thermal power plants and it is thus essential to periodically assess it using nondestructive evaluation (NDE) techniques. In this contribution, HRM steels are thermally aged up to 16,000 h at 675 °C to simulate the microstructural degradation, then the changes in the magnetic coercivity, hardness, and microstructure are systematically characterized and the relations between them are determined. Both coercivity and hardness decrease with thermal aging duration, which can be interpreted in terms of the microstructure parameters’ evolution based on the pinning of crystal defects on domain walls and dislocations. Coercivity and hardness share the same softening trend with aging time, and good linear relations between coercivity, hardness, and microstructure parameters are found. These results provide a key to understanding the magnetic parameter evolution in HRM steels and suggest the possibility of using magnetic technologies for the NDE of microstructure degradation in thermal power plants. |
format | Online Article Text |
id | pubmed-9317982 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93179822022-07-27 Magnetic Evaluation of Heat-Resistant Martensitic Steel Subjected to Microstructure Degradation Li, Yi Sun, Chao Liu, Kai Xu, Tong He, Binbin Materials (Basel) Article The present paper investigates the use of the magnetic hysteresis loop technique to nondestructively evaluate microstructural degradation in heat-resistant martensitic (HRM) steels. The degradation impairs the safe operation of thermal power plants and it is thus essential to periodically assess it using nondestructive evaluation (NDE) techniques. In this contribution, HRM steels are thermally aged up to 16,000 h at 675 °C to simulate the microstructural degradation, then the changes in the magnetic coercivity, hardness, and microstructure are systematically characterized and the relations between them are determined. Both coercivity and hardness decrease with thermal aging duration, which can be interpreted in terms of the microstructure parameters’ evolution based on the pinning of crystal defects on domain walls and dislocations. Coercivity and hardness share the same softening trend with aging time, and good linear relations between coercivity, hardness, and microstructure parameters are found. These results provide a key to understanding the magnetic parameter evolution in HRM steels and suggest the possibility of using magnetic technologies for the NDE of microstructure degradation in thermal power plants. MDPI 2022-07-13 /pmc/articles/PMC9317982/ /pubmed/35888331 http://dx.doi.org/10.3390/ma15144865 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Yi Sun, Chao Liu, Kai Xu, Tong He, Binbin Magnetic Evaluation of Heat-Resistant Martensitic Steel Subjected to Microstructure Degradation |
title | Magnetic Evaluation of Heat-Resistant Martensitic Steel Subjected to Microstructure Degradation |
title_full | Magnetic Evaluation of Heat-Resistant Martensitic Steel Subjected to Microstructure Degradation |
title_fullStr | Magnetic Evaluation of Heat-Resistant Martensitic Steel Subjected to Microstructure Degradation |
title_full_unstemmed | Magnetic Evaluation of Heat-Resistant Martensitic Steel Subjected to Microstructure Degradation |
title_short | Magnetic Evaluation of Heat-Resistant Martensitic Steel Subjected to Microstructure Degradation |
title_sort | magnetic evaluation of heat-resistant martensitic steel subjected to microstructure degradation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317982/ https://www.ncbi.nlm.nih.gov/pubmed/35888331 http://dx.doi.org/10.3390/ma15144865 |
work_keys_str_mv | AT liyi magneticevaluationofheatresistantmartensiticsteelsubjectedtomicrostructuredegradation AT sunchao magneticevaluationofheatresistantmartensiticsteelsubjectedtomicrostructuredegradation AT liukai magneticevaluationofheatresistantmartensiticsteelsubjectedtomicrostructuredegradation AT xutong magneticevaluationofheatresistantmartensiticsteelsubjectedtomicrostructuredegradation AT hebinbin magneticevaluationofheatresistantmartensiticsteelsubjectedtomicrostructuredegradation |