Cargando…

Identification of Putative Candidate Genes from Galphimia spp. Encoding Enzymes of the Galphimines Triterpenoids Synthesis Pathway with Anxiolytic and Sedative Effects

Galphimia spp. is popularly used in Mexican traditional medicine. Some populations of Galphimia exert anxiolytic and sedative effects due to the presence of the modified triterpenoids galphimines. However, the galphimine synthesis pathway has not yet been elucidated. Hence, in this study, a comparat...

Descripción completa

Detalles Bibliográficos
Autores principales: Iglesias, Dianella, de Donato Capote, Marcos, Méndez Tenorio, Alfonso, Valdivia, Ana Victoria, Gutiérrez-García, Claudia, Paul, Sujay, Iqbal, Hafiz M. N., Villarreal, María Luisa, Sharma, Ashutosh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318123/
https://www.ncbi.nlm.nih.gov/pubmed/35890513
http://dx.doi.org/10.3390/plants11141879
Descripción
Sumario:Galphimia spp. is popularly used in Mexican traditional medicine. Some populations of Galphimia exert anxiolytic and sedative effects due to the presence of the modified triterpenoids galphimines. However, the galphimine synthesis pathway has not yet been elucidated. Hence, in this study, a comparative transcriptome analysis between two contrasting populations of Galphimia spp., a galphimine-producer, and a non-galphimine-producer, is performed using RNA-Seq in the Illumina Next Seq 550 platform to identify putative candidates genes that encode enzymes of this metabolic pathway. Transcriptome functional annotation was performed using the Blast2GO in levels of gene ontology. For differential expression analysis, edgeR, pheatmap, and Genie3 library were used. To validate transcriptome data, qPCR was conducted. In producer and non-producer plants of both populations of Galphimia spp., most of the transcripts were grouped in the Molecular Function level of gene ontology. A total of 680 differentially expressed transcripts between producer and non-producer plants were detected. In galphimine-producer plants, a larger number of highly expressed transcripts related to acyclic and polycyclic terpene synthesis were identified. As putative candidate genes involved in the galphimine synthesis pathway, P450 family members and enzymes with kinase activity were identified.