Cargando…

A Complex-Valued Self-Supervised Learning-Based Method for Specific Emitter Identification

Specific emitter identification (SEI) refers to distinguishing emitters using individual features extracted from wireless signals. The current SEI methods have proven to be accurate in tackling large labeled data sets at a high signal-to-noise ratio (SNR). However, their performance declines dramati...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Dongxing, Yang, Junan, Liu, Hui, Huang, Keju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318124/
https://www.ncbi.nlm.nih.gov/pubmed/35885074
http://dx.doi.org/10.3390/e24070851
Descripción
Sumario:Specific emitter identification (SEI) refers to distinguishing emitters using individual features extracted from wireless signals. The current SEI methods have proven to be accurate in tackling large labeled data sets at a high signal-to-noise ratio (SNR). However, their performance declines dramatically in the presence of small samples and a significant noise environment. To address this issue, we propose a complex self-supervised learning scheme to fully exploit the unlabeled samples, comprised of a pretext task adopting the contrastive learning concept and a downstream task. In the former task, we design an optimized data augmentation method based on communication signals to serve the contrastive conception. Then, we embed a complex-valued network in the learning to improve the robustness to noise. The proposed scheme demonstrates the generality of handling the small and sufficient samples cases across a wide range from 10 to 400 being labeled in each group. The experiment also shows a promising accuracy and robustness where the recognition results increase at 10–16% from 10–15 SNR.