Cargando…
BI-RADS-Based Classification of Mammographic Soft Tissue Opacities Using a Deep Convolutional Neural Network
The aim of this study was to investigate the potential of a machine learning algorithm to classify breast cancer solely by the presence of soft tissue opacities in mammograms, independent of other morphological features, using a deep convolutional neural network (dCNN). Soft tissue opacities were cl...
Autores principales: | Sabani, Albin, Landsmann, Anna, Hejduk, Patryk, Schmidt, Cynthia, Marcon, Magda, Borkowski, Karol, Rossi, Cristina, Ciritsis, Alexander, Boss, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318280/ https://www.ncbi.nlm.nih.gov/pubmed/35885470 http://dx.doi.org/10.3390/diagnostics12071564 |
Ejemplares similares
-
Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network
por: Hejduk, Patryk, et al.
Publicado: (2022) -
Applied Machine Learning in Spiral Breast-CT: Can We Train a Deep Convolutional Neural Network for Automatic, Standardized and Observer Independent Classification of Breast Density?
por: Landsmann, Anna, et al.
Publicado: (2022) -
Detecting Abnormal Axillary Lymph Nodes on Mammograms Using a Deep Convolutional Neural Network
por: Abel, Frederik, et al.
Publicado: (2022) -
Fully automatic classification of breast MRI background parenchymal enhancement using a transfer learning approach
por: Borkowski, Karol, et al.
Publicado: (2020) -
Radiomics in photon-counting dedicated breast CT: potential of texture analysis for breast density classification
por: Landsmann, Anna, et al.
Publicado: (2022)