Cargando…

Performance of Artificial Intelligence-Based Algorithms to Predict Prolonged Length of Stay after Lumbar Decompression Surgery

Background: Decompression of the lumbar spine is one of the most common procedures performed in spine surgery. Hospital length of stay (LOS) is a clinically relevant metric used to assess surgical success, patient outcomes, and socioeconomic impact. This study aimed to investigate a variety of machi...

Descripción completa

Detalles Bibliográficos
Autores principales: Saravi, Babak, Zink, Alisia, Ülkümen, Sara, Couillard-Despres, Sebastien, Hassel, Frank, Lang, Gernot
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318293/
https://www.ncbi.nlm.nih.gov/pubmed/35887814
http://dx.doi.org/10.3390/jcm11144050
_version_ 1784755255551983616
author Saravi, Babak
Zink, Alisia
Ülkümen, Sara
Couillard-Despres, Sebastien
Hassel, Frank
Lang, Gernot
author_facet Saravi, Babak
Zink, Alisia
Ülkümen, Sara
Couillard-Despres, Sebastien
Hassel, Frank
Lang, Gernot
author_sort Saravi, Babak
collection PubMed
description Background: Decompression of the lumbar spine is one of the most common procedures performed in spine surgery. Hospital length of stay (LOS) is a clinically relevant metric used to assess surgical success, patient outcomes, and socioeconomic impact. This study aimed to investigate a variety of machine learning and deep learning algorithms to reliably predict whether a patient undergoing decompression of lumbar spinal stenosis will experience a prolonged LOS. Methods: Patients undergoing treatment for lumbar spinal stenosis with microsurgical and full-endoscopic decompression were selected within this retrospective monocentric cohort study. Prolonged LOS was defined as an LOS greater than or equal to the 75th percentile of the cohort (normal versus prolonged stay; binary classification task). Unsupervised learning with K-means clustering was used to find clusters in the data. Hospital stay classes were predicted with logistic regression, RandomForest classifier, stochastic gradient descent (SGD) classifier, K-nearest neighbors, Decision Tree classifier, Gaussian Naive Bayes (GaussianNB), support vector machines (SVM), a custom-made convolutional neural network (CNN), multilayer perceptron artificial neural network (MLP), and radial basis function neural network (RBNN) in Python. Prediction accuracy and area under the curve (AUC) were calculated. Feature importance analysis was utilized to find the most important predictors. Further, we developed a decision tree based on the Chi-square automatic interaction detection (CHAID) algorithm to investigate cut-offs of predictors for clinical decision-making. Results: 236 patients and 14 feature variables were included. K-means clustering separated data into two clusters distinguishing the data into two patient risk characteristic groups. The algorithms reached AUCs between 67.5% and 87.3% for the classification of LOS classes. Feature importance analysis of deep learning algorithms indicated that operation time was the most important feature in predicting LOS. A decision tree based on CHAID could predict 84.7% of the cases. Conclusions: Machine learning and deep learning algorithms can predict whether patients will experience an increased LOS following lumbar decompression surgery. Therefore, medical resources can be more appropriately allocated to patients who are at risk of prolonged LOS.
format Online
Article
Text
id pubmed-9318293
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93182932022-07-27 Performance of Artificial Intelligence-Based Algorithms to Predict Prolonged Length of Stay after Lumbar Decompression Surgery Saravi, Babak Zink, Alisia Ülkümen, Sara Couillard-Despres, Sebastien Hassel, Frank Lang, Gernot J Clin Med Article Background: Decompression of the lumbar spine is one of the most common procedures performed in spine surgery. Hospital length of stay (LOS) is a clinically relevant metric used to assess surgical success, patient outcomes, and socioeconomic impact. This study aimed to investigate a variety of machine learning and deep learning algorithms to reliably predict whether a patient undergoing decompression of lumbar spinal stenosis will experience a prolonged LOS. Methods: Patients undergoing treatment for lumbar spinal stenosis with microsurgical and full-endoscopic decompression were selected within this retrospective monocentric cohort study. Prolonged LOS was defined as an LOS greater than or equal to the 75th percentile of the cohort (normal versus prolonged stay; binary classification task). Unsupervised learning with K-means clustering was used to find clusters in the data. Hospital stay classes were predicted with logistic regression, RandomForest classifier, stochastic gradient descent (SGD) classifier, K-nearest neighbors, Decision Tree classifier, Gaussian Naive Bayes (GaussianNB), support vector machines (SVM), a custom-made convolutional neural network (CNN), multilayer perceptron artificial neural network (MLP), and radial basis function neural network (RBNN) in Python. Prediction accuracy and area under the curve (AUC) were calculated. Feature importance analysis was utilized to find the most important predictors. Further, we developed a decision tree based on the Chi-square automatic interaction detection (CHAID) algorithm to investigate cut-offs of predictors for clinical decision-making. Results: 236 patients and 14 feature variables were included. K-means clustering separated data into two clusters distinguishing the data into two patient risk characteristic groups. The algorithms reached AUCs between 67.5% and 87.3% for the classification of LOS classes. Feature importance analysis of deep learning algorithms indicated that operation time was the most important feature in predicting LOS. A decision tree based on CHAID could predict 84.7% of the cases. Conclusions: Machine learning and deep learning algorithms can predict whether patients will experience an increased LOS following lumbar decompression surgery. Therefore, medical resources can be more appropriately allocated to patients who are at risk of prolonged LOS. MDPI 2022-07-13 /pmc/articles/PMC9318293/ /pubmed/35887814 http://dx.doi.org/10.3390/jcm11144050 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Saravi, Babak
Zink, Alisia
Ülkümen, Sara
Couillard-Despres, Sebastien
Hassel, Frank
Lang, Gernot
Performance of Artificial Intelligence-Based Algorithms to Predict Prolonged Length of Stay after Lumbar Decompression Surgery
title Performance of Artificial Intelligence-Based Algorithms to Predict Prolonged Length of Stay after Lumbar Decompression Surgery
title_full Performance of Artificial Intelligence-Based Algorithms to Predict Prolonged Length of Stay after Lumbar Decompression Surgery
title_fullStr Performance of Artificial Intelligence-Based Algorithms to Predict Prolonged Length of Stay after Lumbar Decompression Surgery
title_full_unstemmed Performance of Artificial Intelligence-Based Algorithms to Predict Prolonged Length of Stay after Lumbar Decompression Surgery
title_short Performance of Artificial Intelligence-Based Algorithms to Predict Prolonged Length of Stay after Lumbar Decompression Surgery
title_sort performance of artificial intelligence-based algorithms to predict prolonged length of stay after lumbar decompression surgery
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318293/
https://www.ncbi.nlm.nih.gov/pubmed/35887814
http://dx.doi.org/10.3390/jcm11144050
work_keys_str_mv AT saravibabak performanceofartificialintelligencebasedalgorithmstopredictprolongedlengthofstayafterlumbardecompressionsurgery
AT zinkalisia performanceofartificialintelligencebasedalgorithmstopredictprolongedlengthofstayafterlumbardecompressionsurgery
AT ulkumensara performanceofartificialintelligencebasedalgorithmstopredictprolongedlengthofstayafterlumbardecompressionsurgery
AT couillarddespressebastien performanceofartificialintelligencebasedalgorithmstopredictprolongedlengthofstayafterlumbardecompressionsurgery
AT hasselfrank performanceofartificialintelligencebasedalgorithmstopredictprolongedlengthofstayafterlumbardecompressionsurgery
AT langgernot performanceofartificialintelligencebasedalgorithmstopredictprolongedlengthofstayafterlumbardecompressionsurgery