Cargando…
FT-IR Method Limitations for β-Glucan Analysis
β-glucans are known as biological response modifiers. However, different sources can result in structural differences and as a result differences in their biological activity. The hot water extraction method allows to obtain, high molecular weight β-glucans without altering their structure by using...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318380/ https://www.ncbi.nlm.nih.gov/pubmed/35889491 http://dx.doi.org/10.3390/molecules27144616 |
Sumario: | β-glucans are known as biological response modifiers. However, different sources can result in structural differences and as a result differences in their biological activity. The hot water extraction method allows to obtain, high molecular weight β-glucans without altering their structure by using strong chemicals, such as alkalis or acids. Analysis of β-glucans by FT-IR and NMR spectroscopy in solid state is superior to analysis in solution as it allows researchers to study the preserved structure of the extracted polysaccharides. FT-IR spectroscopy was used in this study to make side-by-side comparison analysis of hot water extracted β-glucans from different yeast sources. NMR spectroscopy was used to confirm findings made by FT-IR spectroscopy. Extracted β-glucans exhibit characteristic structure of β-1,3/1,6-linked glucans with noticeable levels of proteins, possibly in a form of oligopeptides, chitin and other impurities. β-glucans obtained from C. guilliermondii, P. pastoris and S. pastorianus exhibited higher protein content. Differences in mannan, chitin and α-glucan content were also observed; however, the species-specific structure of obtained β-glucans could not be confirmed without additional studies. Structural analysis of high molecular weight β-glucans in solid state by FT-IR spectroscopy is difficult or limited due to band intensity changes and overlapping originating from different molecules. |
---|