Cargando…
DRSNFuse: Deep Residual Shrinkage Network for Infrared and Visible Image Fusion
Infrared images are robust against illumination variation and disguises, containing the sharp edge contours of objects. Visible images are enriched with texture details. Infrared and visible image fusion seeks to obtain high-quality images, keeping the advantages of source images. This paper propose...
Autores principales: | Wang, Hongfeng, Wang, Jianzhong, Xu, Haonan, Sun, Yong, Yu, Zibo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318496/ https://www.ncbi.nlm.nih.gov/pubmed/35890828 http://dx.doi.org/10.3390/s22145149 |
Ejemplares similares
-
Image Motion Deblurring Based on Deep Residual Shrinkage and Generative Adversarial Networks
por: Jiang, Wenbo, et al.
Publicado: (2022) -
Airborne Infrared and Visible Image Fusion Combined with Region Segmentation
por: Zuo, Yujia, et al.
Publicado: (2017) -
RADFNet: An infrared and visible image fusion framework based on distributed network
por: Feng, Siling, et al.
Publicado: (2023) -
FDNet: An end-to-end fusion decomposition network for infrared and visible images
por: Di, Jing, et al.
Publicado: (2023) -
Real-Time Semantics-Driven Infrared and Visible Image Fusion Network
por: Zheng, Binhao, et al.
Publicado: (2023)