Cargando…
Cardiac Disease Classification Using Two-Dimensional Thickness and Few-Shot Learning Based on Magnetic Resonance Imaging Image Segmentation
Cardiac cine magnetic resonance imaging (MRI) is a widely used technique for the noninvasive assessment of cardiac functions. Deep neural networks have achieved considerable progress in overcoming various challenges in cine MRI analysis. However, deep learning models cannot be used for classificatio...
Autores principales: | Wibowo, Adi, Triadyaksa, Pandji, Sugiharto, Aris, Sarwoko, Eko Adi, Nugroho, Fajar Agung, Arai, Hideo, Kawakubo, Masateru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318676/ https://www.ncbi.nlm.nih.gov/pubmed/35877637 http://dx.doi.org/10.3390/jimaging8070194 |
Ejemplares similares
-
Self-Enhanced Mixed Attention Network for Three-Modal Images Few-Shot Semantic Segmentation
por: Song, Kechen, et al.
Publicado: (2023) -
Assessment of Bi-Ventricular and Bi-Atrial Areas Using Four-Chamber Cine Cardiovascular Magnetic Resonance Imaging: Fully Automated Segmentation with a U-Net Convolutional Neural Network
por: Arai, Hideo, et al.
Publicado: (2022) -
Visual Health Analysis of Print Advertising Graphic Design Based on Image Segmentation and Few-Shot Learning
por: Hu, Sen
Publicado: (2022) -
Bidirectional meta-Kronecker factored optimizer and Hausdorff distance loss for few-shot medical image segmentation
por: Kim, Yeongjoon, et al.
Publicado: (2023) -
Insights into few shot learning approaches for image scene classification
por: Soudy, Mohamed, et al.
Publicado: (2021)