Cargando…
Predicting Activity Duration in Smart Sensing Environments Using Synthetic Data and Partial Least Squares Regression: The Case of Dementia Patients
The accurate recognition of activities is fundamental for following up on the health progress of people with dementia (PwD), thereby supporting subsequent diagnosis and treatments. When monitoring the activities of daily living (ADLs), it is feasible to detect behaviour patterns, parse out the disea...
Autores principales: | Ortiz-Barrios, Miguel, Järpe, Eric, García-Constantino, Matías, Cleland, Ian, Nugent, Chris, Arias-Fonseca, Sebastián, Jaramillo-Rueda, Natalia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318990/ https://www.ncbi.nlm.nih.gov/pubmed/35891090 http://dx.doi.org/10.3390/s22145410 |
Ejemplares similares
-
Partial least square regression applied to the QTLMAS 2010 dataset
por: Coster, Albart, et al.
Publicado: (2011) -
Compressor map regression modelling based on partial least squares
por: Li, Xu, et al.
Publicado: (2018) -
Quasi-least squares regression
por: Shults, Justine, et al.
Publicado: (2014) -
Sparse partial least squares regression for simultaneous dimension reduction and variable selection
por: Chun, Hyonho, et al.
Publicado: (2010) -
Partial Least Squares Regression Performs Well in MRI-Based Individualized Estimations
por: Chen, Chen, et al.
Publicado: (2019)