Cargando…
Infrared and Visible Image Fusion Method Using Salience Detection and Convolutional Neural Network
This paper presents an algorithm for infrared and visible image fusion using significance detection and Convolutional Neural Networks with the aim of integrating discriminatory features and improving the overall quality of visual perception. Firstly, a global contrast-based significance detection al...
Autores principales: | Wang, Zetian, Wang, Fei, Wu, Dan, Gao, Guowang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319094/ https://www.ncbi.nlm.nih.gov/pubmed/35891107 http://dx.doi.org/10.3390/s22145430 |
Ejemplares similares
-
Multi illumination color constancy based on multi-scale supervision and single-scale estimation cascade convolution neural network
por: Wang, Fei, et al.
Publicado: (2022) -
Infrared and Visible Image Fusion Based on Visual Saliency Map and Image Contrast Enhancement
por: Liu, Yuanyuan, et al.
Publicado: (2022) -
A Real-Time FPGA Implementation of Infrared and Visible Image Fusion Using Guided Filter and Saliency Detection
por: Zhang, Ling, et al.
Publicado: (2022) -
A Novel Infrared and Visible Image Fusion Approach Based on Adversarial Neural Network
por: Chen, Xianglong, et al.
Publicado: (2021) -
Application of Convolutional Neural Network-Based Feature Extraction and Data Fusion for Geographical Origin Identification of Radix Astragali by Visible/Short-Wave Near-Infrared and Near Infrared Hyperspectral Imaging
por: Xiao, Qinlin, et al.
Publicado: (2020)