Cargando…
Amyloid Properties of the FXR1 Protein Are Conserved in Evolution of Vertebrates
Functional amyloids are fibrillary proteins with a cross-β structure that play a structural or regulatory role in pro- and eukaryotes. Previously, we have demonstrated that the RNA-binding FXR1 protein functions in an amyloid form in the rat brain. This RNA-binding protein plays an important role in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319111/ https://www.ncbi.nlm.nih.gov/pubmed/35887344 http://dx.doi.org/10.3390/ijms23147997 |
_version_ | 1784755469792837632 |
---|---|
author | Velizhanina, Maria E. Galkin, Alexey P. |
author_facet | Velizhanina, Maria E. Galkin, Alexey P. |
author_sort | Velizhanina, Maria E. |
collection | PubMed |
description | Functional amyloids are fibrillary proteins with a cross-β structure that play a structural or regulatory role in pro- and eukaryotes. Previously, we have demonstrated that the RNA-binding FXR1 protein functions in an amyloid form in the rat brain. This RNA-binding protein plays an important role in the regulation of long-term memory, emotions, and cancer. Here, we evaluate the amyloid properties of FXR1 in organisms representing various classes of vertebrates. We show the colocalization of FXR1 with amyloid-specific dyes in the neurons of amphibians, reptiles, and birds. Moreover, FXR1, as with other amyloids, forms detergent-resistant insoluble aggregates in all studied animals. The FXR1 protein isolated by immunoprecipitation from the brains of different vertebrate species forms fibrils, which show yellow-green birefringence after staining with Congo red. Our data indicate that in the evolution of vertebrates, FXR1 acquired amyloid properties at least 365 million years ago. Based on the obtained data, we discuss the possible role of FXR1 amyloid fibrils in the regulation of vital processes in the brain of vertebrates. |
format | Online Article Text |
id | pubmed-9319111 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93191112022-07-27 Amyloid Properties of the FXR1 Protein Are Conserved in Evolution of Vertebrates Velizhanina, Maria E. Galkin, Alexey P. Int J Mol Sci Article Functional amyloids are fibrillary proteins with a cross-β structure that play a structural or regulatory role in pro- and eukaryotes. Previously, we have demonstrated that the RNA-binding FXR1 protein functions in an amyloid form in the rat brain. This RNA-binding protein plays an important role in the regulation of long-term memory, emotions, and cancer. Here, we evaluate the amyloid properties of FXR1 in organisms representing various classes of vertebrates. We show the colocalization of FXR1 with amyloid-specific dyes in the neurons of amphibians, reptiles, and birds. Moreover, FXR1, as with other amyloids, forms detergent-resistant insoluble aggregates in all studied animals. The FXR1 protein isolated by immunoprecipitation from the brains of different vertebrate species forms fibrils, which show yellow-green birefringence after staining with Congo red. Our data indicate that in the evolution of vertebrates, FXR1 acquired amyloid properties at least 365 million years ago. Based on the obtained data, we discuss the possible role of FXR1 amyloid fibrils in the regulation of vital processes in the brain of vertebrates. MDPI 2022-07-20 /pmc/articles/PMC9319111/ /pubmed/35887344 http://dx.doi.org/10.3390/ijms23147997 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Velizhanina, Maria E. Galkin, Alexey P. Amyloid Properties of the FXR1 Protein Are Conserved in Evolution of Vertebrates |
title | Amyloid Properties of the FXR1 Protein Are Conserved in Evolution of Vertebrates |
title_full | Amyloid Properties of the FXR1 Protein Are Conserved in Evolution of Vertebrates |
title_fullStr | Amyloid Properties of the FXR1 Protein Are Conserved in Evolution of Vertebrates |
title_full_unstemmed | Amyloid Properties of the FXR1 Protein Are Conserved in Evolution of Vertebrates |
title_short | Amyloid Properties of the FXR1 Protein Are Conserved in Evolution of Vertebrates |
title_sort | amyloid properties of the fxr1 protein are conserved in evolution of vertebrates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319111/ https://www.ncbi.nlm.nih.gov/pubmed/35887344 http://dx.doi.org/10.3390/ijms23147997 |
work_keys_str_mv | AT velizhaninamariae amyloidpropertiesofthefxr1proteinareconservedinevolutionofvertebrates AT galkinalexeyp amyloidpropertiesofthefxr1proteinareconservedinevolutionofvertebrates |