Cargando…
Design and Gamma-Ray Attenuation Features of New Concrete Materials for Low- and Moderate-Photons Energy Protection Applications
We aimed, in this investigation, to prepare novel concretes which can be used in gamma-ray shielding applications. The experimental approach was performed using a NaI (Tl) detector to measure the concrete’s shielding features for different energies, ranging from 0.081 MeV to 1.408 MeV. The density o...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319193/ https://www.ncbi.nlm.nih.gov/pubmed/35888418 http://dx.doi.org/10.3390/ma15144947 |
_version_ | 1784755489870970880 |
---|---|
author | Aloraini, Dalal A. Hanfi, M. Y. Sayyed, M. I. Naseer, K. A. Almuqrin, Aljawhara H. Tamayo, P. Tashlykov, O. L. Mahmoud, K. A. |
author_facet | Aloraini, Dalal A. Hanfi, M. Y. Sayyed, M. I. Naseer, K. A. Almuqrin, Aljawhara H. Tamayo, P. Tashlykov, O. L. Mahmoud, K. A. |
author_sort | Aloraini, Dalal A. |
collection | PubMed |
description | We aimed, in this investigation, to prepare novel concretes which can be used in gamma-ray shielding applications. The experimental approach was performed using a NaI (Tl) detector to measure the concrete’s shielding features for different energies, ranging from 0.081 MeV to 1.408 MeV. The density of the fabricated concretes decreased with increasing W/C ratio, where the density decreased by 2.680 g/cm(3), 2.614 g/cm(3), and 2.564 g/cm(3) for concretes A, B, and C, respectively, with increases in the W/C ratio of 0.4, 0.6, and 0.8, respectively. When the energy was elevated between 0.08 MeV and 1.408 MeV, the highest values were attained for concrete A, with values ranging between 0.451 cm(−1) and 0.179 cm(−1). The lowest half-value layer (Δ(0.5)) values were achieved for concrete C, where the Δ(0.5) values varied between 1.53 cm and 3.86 cm between 0.08 MeV and 1.408 MeV. The highest Δ(0.5) values were achieved for concrete A, where the Δ(0.5) varied between 1.77 cm and 4.67 cm between 0.08 MeV and 1.408 MeV. According to this investigation, concrete A has the highest promise in radiation shielding purposes because it has the most desirable properties of the concretes studied. |
format | Online Article Text |
id | pubmed-9319193 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93191932022-07-27 Design and Gamma-Ray Attenuation Features of New Concrete Materials for Low- and Moderate-Photons Energy Protection Applications Aloraini, Dalal A. Hanfi, M. Y. Sayyed, M. I. Naseer, K. A. Almuqrin, Aljawhara H. Tamayo, P. Tashlykov, O. L. Mahmoud, K. A. Materials (Basel) Article We aimed, in this investigation, to prepare novel concretes which can be used in gamma-ray shielding applications. The experimental approach was performed using a NaI (Tl) detector to measure the concrete’s shielding features for different energies, ranging from 0.081 MeV to 1.408 MeV. The density of the fabricated concretes decreased with increasing W/C ratio, where the density decreased by 2.680 g/cm(3), 2.614 g/cm(3), and 2.564 g/cm(3) for concretes A, B, and C, respectively, with increases in the W/C ratio of 0.4, 0.6, and 0.8, respectively. When the energy was elevated between 0.08 MeV and 1.408 MeV, the highest values were attained for concrete A, with values ranging between 0.451 cm(−1) and 0.179 cm(−1). The lowest half-value layer (Δ(0.5)) values were achieved for concrete C, where the Δ(0.5) values varied between 1.53 cm and 3.86 cm between 0.08 MeV and 1.408 MeV. The highest Δ(0.5) values were achieved for concrete A, where the Δ(0.5) varied between 1.77 cm and 4.67 cm between 0.08 MeV and 1.408 MeV. According to this investigation, concrete A has the highest promise in radiation shielding purposes because it has the most desirable properties of the concretes studied. MDPI 2022-07-15 /pmc/articles/PMC9319193/ /pubmed/35888418 http://dx.doi.org/10.3390/ma15144947 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Aloraini, Dalal A. Hanfi, M. Y. Sayyed, M. I. Naseer, K. A. Almuqrin, Aljawhara H. Tamayo, P. Tashlykov, O. L. Mahmoud, K. A. Design and Gamma-Ray Attenuation Features of New Concrete Materials for Low- and Moderate-Photons Energy Protection Applications |
title | Design and Gamma-Ray Attenuation Features of New Concrete Materials for Low- and Moderate-Photons Energy Protection Applications |
title_full | Design and Gamma-Ray Attenuation Features of New Concrete Materials for Low- and Moderate-Photons Energy Protection Applications |
title_fullStr | Design and Gamma-Ray Attenuation Features of New Concrete Materials for Low- and Moderate-Photons Energy Protection Applications |
title_full_unstemmed | Design and Gamma-Ray Attenuation Features of New Concrete Materials for Low- and Moderate-Photons Energy Protection Applications |
title_short | Design and Gamma-Ray Attenuation Features of New Concrete Materials for Low- and Moderate-Photons Energy Protection Applications |
title_sort | design and gamma-ray attenuation features of new concrete materials for low- and moderate-photons energy protection applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319193/ https://www.ncbi.nlm.nih.gov/pubmed/35888418 http://dx.doi.org/10.3390/ma15144947 |
work_keys_str_mv | AT alorainidalala designandgammarayattenuationfeaturesofnewconcretematerialsforlowandmoderatephotonsenergyprotectionapplications AT hanfimy designandgammarayattenuationfeaturesofnewconcretematerialsforlowandmoderatephotonsenergyprotectionapplications AT sayyedmi designandgammarayattenuationfeaturesofnewconcretematerialsforlowandmoderatephotonsenergyprotectionapplications AT naseerka designandgammarayattenuationfeaturesofnewconcretematerialsforlowandmoderatephotonsenergyprotectionapplications AT almuqrinaljawharah designandgammarayattenuationfeaturesofnewconcretematerialsforlowandmoderatephotonsenergyprotectionapplications AT tamayop designandgammarayattenuationfeaturesofnewconcretematerialsforlowandmoderatephotonsenergyprotectionapplications AT tashlykovol designandgammarayattenuationfeaturesofnewconcretematerialsforlowandmoderatephotonsenergyprotectionapplications AT mahmoudka designandgammarayattenuationfeaturesofnewconcretematerialsforlowandmoderatephotonsenergyprotectionapplications |