Cargando…
The Residual ISI for Which the Convolutional Noise Probability Density Function Associated with the Blind Adaptive Deconvolution Problem Turns Approximately Gaussian
In a blind adaptive deconvolution problem, the convolutional noise observed at the output of the deconvolution process, in addition to the required source signal, is—according to the literature—assumed to be a Gaussian process when the deconvolution process (the blind adaptive equalizer) is deep in...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319263/ https://www.ncbi.nlm.nih.gov/pubmed/35885212 http://dx.doi.org/10.3390/e24070989 |
_version_ | 1784755506937593856 |
---|---|
author | Pinchas, Monika |
author_facet | Pinchas, Monika |
author_sort | Pinchas, Monika |
collection | PubMed |
description | In a blind adaptive deconvolution problem, the convolutional noise observed at the output of the deconvolution process, in addition to the required source signal, is—according to the literature—assumed to be a Gaussian process when the deconvolution process (the blind adaptive equalizer) is deep in its convergence state. Namely, when the convolutional noise sequence or, equivalently, the residual inter-symbol interference (ISI) is considered small. Up to now, no closed-form approximated expression is given for the residual ISI, where the Gaussian model can be used to describe the convolutional noise probability density function (pdf). In this paper, we use the Maximum Entropy density technique, Lagrange’s Integral method, and quasi-moment truncation technique to obtain an approximated closed-form equation for the residual ISI where the Gaussian model can be used to approximately describe the convolutional noise pdf. We will show, based on this approximated closed-form equation for the residual ISI, that the Gaussian model can be used to approximately describe the convolutional noise pdf just before the equalizer has converged, even at a residual ISI level where the “eye diagram” is still very closed, namely, where the residual ISI can not be considered as small. |
format | Online Article Text |
id | pubmed-9319263 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93192632022-07-27 The Residual ISI for Which the Convolutional Noise Probability Density Function Associated with the Blind Adaptive Deconvolution Problem Turns Approximately Gaussian Pinchas, Monika Entropy (Basel) Article In a blind adaptive deconvolution problem, the convolutional noise observed at the output of the deconvolution process, in addition to the required source signal, is—according to the literature—assumed to be a Gaussian process when the deconvolution process (the blind adaptive equalizer) is deep in its convergence state. Namely, when the convolutional noise sequence or, equivalently, the residual inter-symbol interference (ISI) is considered small. Up to now, no closed-form approximated expression is given for the residual ISI, where the Gaussian model can be used to describe the convolutional noise probability density function (pdf). In this paper, we use the Maximum Entropy density technique, Lagrange’s Integral method, and quasi-moment truncation technique to obtain an approximated closed-form equation for the residual ISI where the Gaussian model can be used to approximately describe the convolutional noise pdf. We will show, based on this approximated closed-form equation for the residual ISI, that the Gaussian model can be used to approximately describe the convolutional noise pdf just before the equalizer has converged, even at a residual ISI level where the “eye diagram” is still very closed, namely, where the residual ISI can not be considered as small. MDPI 2022-07-17 /pmc/articles/PMC9319263/ /pubmed/35885212 http://dx.doi.org/10.3390/e24070989 Text en © 2022 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pinchas, Monika The Residual ISI for Which the Convolutional Noise Probability Density Function Associated with the Blind Adaptive Deconvolution Problem Turns Approximately Gaussian |
title | The Residual ISI for Which the Convolutional Noise Probability Density Function Associated with the Blind Adaptive Deconvolution Problem Turns Approximately Gaussian |
title_full | The Residual ISI for Which the Convolutional Noise Probability Density Function Associated with the Blind Adaptive Deconvolution Problem Turns Approximately Gaussian |
title_fullStr | The Residual ISI for Which the Convolutional Noise Probability Density Function Associated with the Blind Adaptive Deconvolution Problem Turns Approximately Gaussian |
title_full_unstemmed | The Residual ISI for Which the Convolutional Noise Probability Density Function Associated with the Blind Adaptive Deconvolution Problem Turns Approximately Gaussian |
title_short | The Residual ISI for Which the Convolutional Noise Probability Density Function Associated with the Blind Adaptive Deconvolution Problem Turns Approximately Gaussian |
title_sort | residual isi for which the convolutional noise probability density function associated with the blind adaptive deconvolution problem turns approximately gaussian |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319263/ https://www.ncbi.nlm.nih.gov/pubmed/35885212 http://dx.doi.org/10.3390/e24070989 |
work_keys_str_mv | AT pinchasmonika theresidualisiforwhichtheconvolutionalnoiseprobabilitydensityfunctionassociatedwiththeblindadaptivedeconvolutionproblemturnsapproximatelygaussian AT pinchasmonika residualisiforwhichtheconvolutionalnoiseprobabilitydensityfunctionassociatedwiththeblindadaptivedeconvolutionproblemturnsapproximatelygaussian |