Cargando…
Pulmonary Lesion Classification Framework Using the Weighted Ensemble Classification with Random Forest and CNN Models for EBUS Images
Lung cancer is a deadly disease with a high mortality rate. Endobronchial ultrasonography (EBUS) is one of the methods for detecting pulmonary lesions. Computer-aided diagnosis of pulmonary lesions from images can help radiologists to classify lesions; however, most of the existing methods need a la...
Autores principales: | Khomkham, Banphatree, Lipikorn, Rajalida |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319293/ https://www.ncbi.nlm.nih.gov/pubmed/35885458 http://dx.doi.org/10.3390/diagnostics12071552 |
Ejemplares similares
-
Weighted ensemble model for image classification
por: Iqball, Talib, et al.
Publicado: (2023) -
Joint Classification and Prediction CNN Framework for Automatic Sleep Stage Classification
Publicado: (2018) -
Two Ensemble-CNN Approaches for Colorectal Cancer Tissue Type Classification
por: Paladini, Emanuela, et al.
Publicado: (2021) -
A hybrid CNN-Random Forest algorithm for bacterial spore segmentation and classification in TEM images
por: Qamar, Saqib, et al.
Publicado: (2023) -
Electronic cleansing in computed tomography colonography using AT layer identification with integration of gradient directional second derivative and material fraction model
por: Chunhapongpipat, Krisorn, et al.
Publicado: (2017)