Cargando…
Vegetative Insecticidal Protein Vip3Aa Is Transported via Membrane Vesicles in Bacillus thuringiensis BMB171
Vegetative insecticidal protein Vip3Aa, secreted by many Bacillus thuringiensis (Bt) strains during the vegetative growth stage, represents the second-generation insecticidal toxin. In recent years, significant progress has been made on its structure and action mechanism. However, how it is transloc...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319297/ https://www.ncbi.nlm.nih.gov/pubmed/35878218 http://dx.doi.org/10.3390/toxins14070480 |
_version_ | 1784755515245461504 |
---|---|
author | Zhang, Yizhuo Li, Xuelian Tian, Hongwei An, Baoju Yan, Bing Cai, Jun |
author_facet | Zhang, Yizhuo Li, Xuelian Tian, Hongwei An, Baoju Yan, Bing Cai, Jun |
author_sort | Zhang, Yizhuo |
collection | PubMed |
description | Vegetative insecticidal protein Vip3Aa, secreted by many Bacillus thuringiensis (Bt) strains during the vegetative growth stage, represents the second-generation insecticidal toxin. In recent years, significant progress has been made on its structure and action mechanism. However, how it is translocated across the cytoplasmic membrane into the environment remains a mystery. This work demonstrates that Vip3Aa is not secreted by the General Secretion (Sec) System. To reveal the secretory pathway of Vip3A, we purified the membrane vesicles (MVs) of B. thuringiensis BMB171 and observed by TEM. The size of MVs was determined by the dynamic light scattering method, and their diameter was approximately 40–200 nm, which is consistent with the vesicles in Gram-negative bacteria. Moreover, Vip3A could be detected in the purified MVs by Western blot, and immunoelectron microscopy reveals Vip3A antibody-coated gold particles located in the MVs. After deleting its signal peptide, chitinase B (ChiB) failed to be secreted. However, the recombinant ChiB, whose signal peptide was substituted with the N-terminal 39 amino acids from Vip3A, was secreted successfully through MVs. Thus, this sequence is proposed as the signal region responsible for vesicle transport. Together, our results revealed for the first time that Vip3Aa is transported to the medium via MVs. |
format | Online Article Text |
id | pubmed-9319297 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93192972022-07-27 Vegetative Insecticidal Protein Vip3Aa Is Transported via Membrane Vesicles in Bacillus thuringiensis BMB171 Zhang, Yizhuo Li, Xuelian Tian, Hongwei An, Baoju Yan, Bing Cai, Jun Toxins (Basel) Article Vegetative insecticidal protein Vip3Aa, secreted by many Bacillus thuringiensis (Bt) strains during the vegetative growth stage, represents the second-generation insecticidal toxin. In recent years, significant progress has been made on its structure and action mechanism. However, how it is translocated across the cytoplasmic membrane into the environment remains a mystery. This work demonstrates that Vip3Aa is not secreted by the General Secretion (Sec) System. To reveal the secretory pathway of Vip3A, we purified the membrane vesicles (MVs) of B. thuringiensis BMB171 and observed by TEM. The size of MVs was determined by the dynamic light scattering method, and their diameter was approximately 40–200 nm, which is consistent with the vesicles in Gram-negative bacteria. Moreover, Vip3A could be detected in the purified MVs by Western blot, and immunoelectron microscopy reveals Vip3A antibody-coated gold particles located in the MVs. After deleting its signal peptide, chitinase B (ChiB) failed to be secreted. However, the recombinant ChiB, whose signal peptide was substituted with the N-terminal 39 amino acids from Vip3A, was secreted successfully through MVs. Thus, this sequence is proposed as the signal region responsible for vesicle transport. Together, our results revealed for the first time that Vip3Aa is transported to the medium via MVs. MDPI 2022-07-13 /pmc/articles/PMC9319297/ /pubmed/35878218 http://dx.doi.org/10.3390/toxins14070480 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Yizhuo Li, Xuelian Tian, Hongwei An, Baoju Yan, Bing Cai, Jun Vegetative Insecticidal Protein Vip3Aa Is Transported via Membrane Vesicles in Bacillus thuringiensis BMB171 |
title | Vegetative Insecticidal Protein Vip3Aa Is Transported via Membrane Vesicles in Bacillus thuringiensis BMB171 |
title_full | Vegetative Insecticidal Protein Vip3Aa Is Transported via Membrane Vesicles in Bacillus thuringiensis BMB171 |
title_fullStr | Vegetative Insecticidal Protein Vip3Aa Is Transported via Membrane Vesicles in Bacillus thuringiensis BMB171 |
title_full_unstemmed | Vegetative Insecticidal Protein Vip3Aa Is Transported via Membrane Vesicles in Bacillus thuringiensis BMB171 |
title_short | Vegetative Insecticidal Protein Vip3Aa Is Transported via Membrane Vesicles in Bacillus thuringiensis BMB171 |
title_sort | vegetative insecticidal protein vip3aa is transported via membrane vesicles in bacillus thuringiensis bmb171 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319297/ https://www.ncbi.nlm.nih.gov/pubmed/35878218 http://dx.doi.org/10.3390/toxins14070480 |
work_keys_str_mv | AT zhangyizhuo vegetativeinsecticidalproteinvip3aaistransportedviamembranevesiclesinbacillusthuringiensisbmb171 AT lixuelian vegetativeinsecticidalproteinvip3aaistransportedviamembranevesiclesinbacillusthuringiensisbmb171 AT tianhongwei vegetativeinsecticidalproteinvip3aaistransportedviamembranevesiclesinbacillusthuringiensisbmb171 AT anbaoju vegetativeinsecticidalproteinvip3aaistransportedviamembranevesiclesinbacillusthuringiensisbmb171 AT yanbing vegetativeinsecticidalproteinvip3aaistransportedviamembranevesiclesinbacillusthuringiensisbmb171 AT caijun vegetativeinsecticidalproteinvip3aaistransportedviamembranevesiclesinbacillusthuringiensisbmb171 |