Cargando…

Use of Thymol in Nosema ceranae Control and Health Improvement of Infected Honey Bees

SIMPLE SUMMARY: In the European Union, there is no registered product for the control of the honey bee endoparasite Nosema ceranae. Thus, researchers are looking for options for Nosema treatment. The aim of this study was to investigate the effect of a natural essential-oil ingredient (thymol) deriv...

Descripción completa

Detalles Bibliográficos
Autores principales: Glavinic, Uros, Blagojevic, Jovan, Ristanic, Marko, Stevanovic, Jevrosima, Lakic, Nada, Mirilovic, Milorad, Stanimirovic, Zoran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319372/
https://www.ncbi.nlm.nih.gov/pubmed/35886750
http://dx.doi.org/10.3390/insects13070574
Descripción
Sumario:SIMPLE SUMMARY: In the European Union, there is no registered product for the control of the honey bee endoparasite Nosema ceranae. Thus, researchers are looking for options for Nosema treatment. The aim of this study was to investigate the effect of a natural essential-oil ingredient (thymol) derived from Thymus vulgaris on honey bees infected with N. ceranae. Thymol exerted certain positive effects (increasing bee survival, immunity, and antioxidative protection), as well as positively affecting the spore loads in Nosema-infected bees. However, when applied to Nosema-free bees, thymol caused certain health disorders; therefore, beekeepers should be careful with its use. ABSTRACT: Nosema ceranae is the most widespread microsporidian species which infects the honey bees of Apis mellifera by causing the weakening of their colonies and a decline in their productive and reproductive capacities. The only registered product for its control is the antibiotic fumagillin; however, in the European Union, there is no formulation registered for use in beekeeping. Thymol (3-hydroxy-p-cymene) is a natural essential-oil ingredient derived from Thymus vulgaris, which has been used in Varroa control for decades. The aim of this study was to investigate the effect of thymol supplementation on the expression of immune-related genes and the parameters of oxidative stress and bee survival, as well as spore loads in bees infected with the microsporidian parasite N. ceranae. The results reveal mostly positive effects of thymol on health (increasing levels of immune-related genes and values of oxidative stress parameters, and decreasing Nosema spore loads) when applied to Nosema-infected bees. Moreover, supplementation with thymol did not induce negative effects in Nosema-infected bees. However, our results indicate that in Nosema-free bees, thymol itself could cause certain disorders (affecting bee survival, decreasing oxidative capacity, and downregulation of some immune-related gene expressions), showing that one should be careful with preventive, uncontrolled, and excessive use of thymol. Thus, further research is needed to reveal the effect of this phytogenic supplement on the immunity of uninfected bees.