Cargando…
Medical Image Segmentation with Learning Semantic and Global Contextual Representation
Automatic medical image segmentation is an essential step toward accurate diseases diagnosis and designing a follow-up treatment. This assistive method facilitates the cancer detection process and provides a benchmark to highlight the affected area. The U-Net model has become the standard design cho...
Autor principal: | Alahmadi, Mohammad D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319384/ https://www.ncbi.nlm.nih.gov/pubmed/35885454 http://dx.doi.org/10.3390/diagnostics12071548 |
Ejemplares similares
-
GL-Segnet: Global-Local representation learning net for medical image segmentation
por: Gai, Di, et al.
Publicado: (2023) -
Learning unsupervised contextual representations for medical synonym discovery
por: Schumacher, Elliot, et al.
Publicado: (2019) -
EDPNet: An Encoding–Decoding Network with Pyramidal Representation for Semantic Image Segmentation
por: Chen, Dong, et al.
Publicado: (2023) -
Semantical Analysis of Contextual Types
por: Pientka, Brigitte, et al.
Publicado: (2020) -
Semantic segmentation of multispectral photoacoustic images using deep learning
por: Schellenberg, Melanie, et al.
Publicado: (2022)