Cargando…
Data-Driven Estimation of a Driving Safety Tolerance Zone Using Imbalanced Machine Learning
Predicting driving behavior and crash risk in real-time is a problem that has been heavily researched in the past years. Although in-vehicle interventions and gamification features in post-trip dashboards have emerged, the connection between real-time driving behavior prediction and the triggering o...
Autores principales: | Garefalakis, Thodoris, Katrakazas, Christos, Yannis, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319394/ https://www.ncbi.nlm.nih.gov/pubmed/35890990 http://dx.doi.org/10.3390/s22145309 |
Ejemplares similares
-
A descriptive analysis of the effect of the COVID-19 pandemic on driving behavior and road safety
por: Katrakazas, Christos, et al.
Publicado: (2020) -
Identifying the impact of the COVID-19 pandemic on driving behavior using naturalistic driving data and time series forecasting
por: Katrakazas, Christos, et al.
Publicado: (2021) -
One year of COVID-19: Impacts on safe driving behavior and policy recommendations
por: Michelaraki, Eva, et al.
Publicado: (2023) -
An Explainable Machine Learning Pipeline for Stroke Prediction on Imbalanced Data
por: Kokkotis, Christos, et al.
Publicado: (2022) -
Machine Learning Model for Imbalanced Cholera Dataset in Tanzania
por: Leo, Judith, et al.
Publicado: (2019)