Cargando…
ScatterHough: Automatic Lane Detection from Noisy LiDAR Data
Lane detection plays an essential role in autonomous driving. Using LiDAR data instead of RGB images makes lane detection a simple straight line, and curve fitting problem works for realtime applications even under poor weather or lighting conditions. Handling scatter distributed noisy data is a cru...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319445/ https://www.ncbi.nlm.nih.gov/pubmed/35891101 http://dx.doi.org/10.3390/s22145424 |
Sumario: | Lane detection plays an essential role in autonomous driving. Using LiDAR data instead of RGB images makes lane detection a simple straight line, and curve fitting problem works for realtime applications even under poor weather or lighting conditions. Handling scatter distributed noisy data is a crucial step to reduce lane detection error from LiDAR data. Classic Hough Transform (HT) only allows points in a straight line to vote on the corresponding parameters, which is not suitable for data in scatter form. In this paper, a Scatter Hough algorithm is proposed for better lane detection on scatter data. Two additional operations, [Formula: see text] neighbor voting and [Formula: see text] neighbor vote-reduction, are introduced to HT to make points in the same curve vote and consider their neighbors’ voting result as well. The evaluation of the proposed method shows that this method can adaptively fit both straight lines and curves with high accuracy, compared with benchmark and state-of-the-art methods. |
---|