Cargando…
Accessing Artificial Intelligence for Fetus Health Status Using Hybrid Deep Learning Algorithm (AlexNet-SVM) on Cardiotocographic Data
Artificial intelligence is serving as an impetus in digital health, clinical support, and health informatics for an informed patient’s outcome. Previous studies only consider classification accuracies of cardiotocographic (CTG) datasets and disregard computational time, which is a relevant parameter...
Autores principales: | Muhammad Hussain, Nadia, Rehman, Ateeq Ur, Othman, Mohamed Tahar Ben, Zafar, Junaid, Zafar, Haroon, Hamam, Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319518/ https://www.ncbi.nlm.nih.gov/pubmed/35890783 http://dx.doi.org/10.3390/s22145103 |
Ejemplares similares
-
Alcoholism Identification Based on an AlexNet Transfer Learning Model
por: Wang, Shui-Hua, et al.
Publicado: (2019) -
Automatic recognition of micronucleus by combining attention mechanism and AlexNet
por: Wei, Weiyi, et al.
Publicado: (2022) -
Polarization Domain Spectrum Sensing Algorithm Based on AlexNet
por: Ren, Shiyu, et al.
Publicado: (2022) -
Intelligent Fault Diagnosis of Rolling Element Bearings Based on Modified AlexNet †
por: Mohiuddin, Mohammad, et al.
Publicado: (2023) -
Improved AlexNet with Inception-V4 for Plant Disease Diagnosis
por: Li, Zhuoxin, et al.
Publicado: (2022)