Cargando…
Modeling Subjective Affect Annotations with Multi-Task Learning
In supervised learning, the generalization capabilities of trained models are based on the available annotations. Usually, multiple annotators are asked to annotate the dataset samples and, then, the common practice is to aggregate the different annotations by computing average scores or majority vo...
Autores principales: | Hayat, Hassan, Ventura, Carles, Lapedriza, Agata |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319580/ https://www.ncbi.nlm.nih.gov/pubmed/35890925 http://dx.doi.org/10.3390/s22145245 |
Ejemplares similares
-
Bayesian multi-task learning for decoding multi-subject neuroimaging data
por: Marquand, Andre F., et al.
Publicado: (2014) -
Multi-task learning to leverage partially annotated data for PPI interface prediction
por: Capel, Henriette, et al.
Publicado: (2022) -
Preferred Spatial Frequencies for Human Face Processing Are Associated with Optimal Class Discrimination in the Machine
por: Keil, Matthias S., et al.
Publicado: (2008) -
HMD-ARG: hierarchical multi-task deep learning for annotating antibiotic resistance genes
por: Li, Yu, et al.
Publicado: (2021) -
Fine-Grained Face Annotation Using Deep Multi-Task CNN
por: Celona, Luigi, et al.
Publicado: (2018)