Cargando…
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
In this paper, we propose a novel squeeze M-SegNet (SM-SegNet) architecture featuring a fire module to perform accurate as well as fast segmentation of the brain on magnetic resonance imaging (MRI) scans. The proposed model utilizes uniform input patches, combined-connections, long skip connections,...
Autores principales: | Yamanakkanavar, Nagaraj, Choi, Jae Young, Lee, Bumshik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319649/ https://www.ncbi.nlm.nih.gov/pubmed/35890829 http://dx.doi.org/10.3390/s22145148 |
Ejemplares similares
-
Multi-Scale Squeeze U-SegNet with Multi Global Attention for Brain MRI Segmentation
por: Dayananda, Chaitra, et al.
Publicado: (2021) -
Retinal Vessel Automatic Segmentation Using SegNet
por: Xu, Xiaomei, et al.
Publicado: (2022) -
Liver Tumor Segmentation in CT Scans Using Modified SegNet
por: Almotairi, Sultan, et al.
Publicado: (2020) -
Retracted: Retinal Vessel Automatic Segmentation Using SegNet
por: Methods in Medicine, Computational and Mathematical
Publicado: (2023) -
Brain SegNet: 3D local refinement network for brain lesion segmentation
por: Hu, Xiaojun, et al.
Publicado: (2020)