Cargando…
Understanding External Influences on Target Detection and Classification Using Camera Trap Images and Machine Learning
Using machine learning (ML) to automate camera trap (CT) image processing is advantageous for time-sensitive applications. However, little is currently known about the factors influencing such processing. Here, we evaluate the influence of occlusion, distance, vegetation type, size class, height, su...
Autores principales: | Westworth, Sally O. A., Chalmers, Carl, Fergus, Paul, Longmore, Steven N., Piel, Alex K., Wich, Serge A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319727/ https://www.ncbi.nlm.nih.gov/pubmed/35891075 http://dx.doi.org/10.3390/s22145386 |
Ejemplares similares
-
An Evaluation of the Factors Affecting ‘Poacher’ Detection with Drones and the Efficacy of Machine-Learning for Detection
por: Doull, Katie E., et al.
Publicado: (2021) -
Camera settings and biome influence the accuracy of citizen science approaches to camera trap image classification
por: Egna, Nicole, et al.
Publicado: (2020) -
Classification Efficiency of Pre-Trained Deep CNN Models on Camera Trap Images
por: Stančić, Adam, et al.
Publicado: (2022) -
An Open Standard for Camera Trap Data
por: Forrester, Tavis, et al.
Publicado: (2016) -
Correction: Ecological correlates of chimpanzee (Pan troglodytes schweinfurthii) density in Mahale Mountains National Park, Tanzania
por: Chitayat, Adrienne B., et al.
Publicado: (2021)