Cargando…
Development and Validation of an Insulin Resistance Model for a Population with Chronic Kidney Disease Using a Machine Learning Approach
Background: Chronic kidney disease (CKD) is a complex syndrome without a definitive treatment. For these patients, insulin resistance (IR) is associated with worse renal and patient outcomes. Until now, no predictive model using machine learning (ML) has been reported on IR in CKD patients. Methods:...
Autores principales: | Lee, Chia-Lin, Liu, Wei-Ju, Tsai, Shang-Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319821/ https://www.ncbi.nlm.nih.gov/pubmed/35889789 http://dx.doi.org/10.3390/nu14142832 |
Ejemplares similares
-
Development and Validation of an Insulin Resistance Predicting Model Using a Machine-Learning Approach in a Population-Based Cohort in Korea
por: Park, Sunmin, et al.
Publicado: (2022) -
Insulin Resistance in Patients with Chronic Kidney Disease
por: Liao, Min-Tser, et al.
Publicado: (2012) -
Comparison and development of machine learning tools in the prediction of chronic kidney disease progression
por: Xiao, Jing, et al.
Publicado: (2019) -
Derivation and Validation of Machine Learning Approaches to Predict Acute Kidney Injury after Cardiac Surgery
por: Lee, Hyung-Chul, et al.
Publicado: (2018) -
A Machine Learning Approach to the Interpretation of Cardiopulmonary Exercise Tests: Development and Validation
por: Inbar, Or, et al.
Publicado: (2021)