Cargando…
Extra Proximal-Gradient Network with Learned Regularization for Image Compressive Sensing Reconstruction
Learned optimization algorithms are promising approaches to inverse problems by leveraging advanced numerical optimization schemes and deep neural network techniques in machine learning. In this paper, we propose a novel deep neural network architecture imitating an extra proximal gradient algorithm...
Autores principales: | Zhang, Qingchao, Ye, Xiaojing, Chen, Yunmei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319865/ https://www.ncbi.nlm.nih.gov/pubmed/35877622 http://dx.doi.org/10.3390/jimaging8070178 |
Ejemplares similares
-
An Optimization-Based Meta-Learning Model for MRI Reconstruction with Diverse Dataset
por: Bian, Wanyu, et al.
Publicado: (2021) -
Compressed Imaging Reconstruction Based on Block Compressed Sensing with Conjugate Gradient Smoothed l(0) Norm
por: Zhang, Yongtian, et al.
Publicado: (2023) -
Dual-Channel Reconstruction Network for Image Compressive Sensing
por: Zhang, Zhongqiang, et al.
Publicado: (2019) -
Calibration-Less Multi-Coil Compressed Sensing Magnetic Resonance Image Reconstruction Based on OSCAR Regularization
por: El Gueddari, Loubna, et al.
Publicado: (2021) -
Image Compressive Sensing via Hybrid Nonlocal Sparsity Regularization
por: Li, Lizhao, et al.
Publicado: (2020)