Cargando…
Non-Negative Matrix Factorization Based on Smoothing and Sparse Constraints for Hyperspectral Unmixing
Hyperspectral unmixing (HU) is a technique for estimating a set of pure source signals (end members) and their proportions (abundances) from each pixel of the hyperspectral image. Non-negative matrix factorization (NMF) can decompose the observation matrix into the product of two non-negative matric...
Autores principales: | Jia, Xiangxiang, Guo, Baofeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319907/ https://www.ncbi.nlm.nih.gov/pubmed/35891096 http://dx.doi.org/10.3390/s22145417 |
Ejemplares similares
-
Manifold regularization for sparse unmixing of hyperspectral images
por: Liu, Junmin, et al.
Publicado: (2016) -
Hyperspectral image spectral-spatial classification via weighted Laplacian smoothing constraint-based sparse representation
por: Chen, Eryang, et al.
Publicado: (2021) -
Tissue Classification of Breast Cancer by Hyperspectral Unmixing
por: Jong, Lynn-Jade S., et al.
Publicado: (2023) -
Distributed Compressed Hyperspectral Sensing Imaging Based on Spectral Unmixing
por: Wang, Zhongliang, et al.
Publicado: (2020) -
Multi-resolution terrestrial hyperspectral dataset for spectral unmixing problems
por: Manohar Kumar, C.V.S.S., et al.
Publicado: (2022)