Cargando…
Gradient Learning under Tilted Empirical Risk Minimization
Gradient Learning (GL), aiming to estimate the gradient of target function, has attracted much attention in variable selection problems due to its mild structure requirements and wide applicability. Despite rapid progress, the majority of the existing GL works are based on the empirical risk minimiz...
Autores principales: | Liu, Liyuan, Song, Biqin, Pan, Zhibin, Yang, Chuanwu, Xiao, Chi, Li, Weifu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320015/ https://www.ncbi.nlm.nih.gov/pubmed/35885179 http://dx.doi.org/10.3390/e24070956 |
Ejemplares similares
-
Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood
por: Yiu, A., et al.
Publicado: (2020) -
Adaptation to implied tilt: extensive spatial extrapolation of orientation gradients
por: Roach, Neil W., et al.
Publicado: (2013) -
Error Bound of Mode-Based Additive Models
por: Deng, Hao, et al.
Publicado: (2021) -
Intra-hemispheric integration underlies perception of tilt illusion
por: Song, Chen, et al.
Publicado: (2018) -
Axial multi-image phase retrieval under tilt illumination
por: Guo, Cheng, et al.
Publicado: (2017)