Cargando…
Diagnostic Accuracy of Machine Learning Models on Mammography in Breast Cancer Classification: A Meta-Analysis
In this meta-analysis, we aimed to estimate the diagnostic accuracy of machine learning models on digital mammograms and tomosynthesis in breast cancer classification and to assess the factors affecting its diagnostic accuracy. We searched for related studies in Web of Science, Scopus, PubMed, Googl...
Autores principales: | Hanis, Tengku Muhammad, Islam, Md Asiful, Musa, Kamarul Imran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320089/ https://www.ncbi.nlm.nih.gov/pubmed/35885548 http://dx.doi.org/10.3390/diagnostics12071643 |
Ejemplares similares
-
A Global Bibliometric Analysis on Antibiotic-Resistant Active Pulmonary Tuberculosis over the Last 25 Years (1996–2020)
por: Islam, Md Asiful, et al.
Publicado: (2022) -
Over-the-Counter Breast Cancer Classification Using Machine Learning and Patient Registration Records
por: Hanis, Tengku Muhammad, et al.
Publicado: (2022) -
Bibliometric Analysis of Global Research Activity on Premature Mortality
por: Rodzlan Hasani, Wan Shakira, et al.
Publicado: (2022) -
Developing a Supplementary Diagnostic Tool for Breast Cancer Risk Estimation Using Ensemble Transfer Learning
por: Hanis, Tengku Muhammad, et al.
Publicado: (2023) -
Prevalence of Metabolic Syndrome among Apparently Healthy Adult Population in Pakistan: A Systematic Review and Meta-Analysis
por: Adil, Syed Omair, et al.
Publicado: (2023)