Cargando…
Secrecy Coding Analysis of Short-Packet Full-Duplex Transmissions with Joint Iterative Channel Estimation and Decoding Processes
This paper studies the secrecy coding analysis achieved by the self-jamming technique in the presence of an eavesdropper by considering a short-packet Full-Duplex (FD) transmission developed based on iterative blind or semi-blind channel estimation and advanced decoding algorithms. Indeed, the legit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320099/ https://www.ncbi.nlm.nih.gov/pubmed/35890937 http://dx.doi.org/10.3390/s22145257 |
_version_ | 1784755711061786624 |
---|---|
author | Vuong, Bao Quoc Gautier, Roland Fiche, Anthony Marazin, Mélanie Despina-Stoian, Cristina |
author_facet | Vuong, Bao Quoc Gautier, Roland Fiche, Anthony Marazin, Mélanie Despina-Stoian, Cristina |
author_sort | Vuong, Bao Quoc |
collection | PubMed |
description | This paper studies the secrecy coding analysis achieved by the self-jamming technique in the presence of an eavesdropper by considering a short-packet Full-Duplex (FD) transmission developed based on iterative blind or semi-blind channel estimation and advanced decoding algorithms. Indeed, the legitimate receiver and eavesdropper can simultaneously receive the intended signal from the transmitter and broadcast a self-jamming or jamming signal to the others. Unlike other conventional techniques without feedback, the blind or semi-blind algorithm applied at the legitimate receiver can simultaneously estimate, firstly, the Self-Interference (SI) channel to cancel the SI component and, secondly, estimate the propagation channel, then decode the intended messages by using 5G Quasi-Cyclic Low-Density Parity Check (QC-LDPC) codes. Taking into account the passive eavesdropper case, the blind channel estimation with a feedback scheme is applied, where the temporary estimation of the intended channel and the decoded message are fed back to improve both the channel estimation and the decoding processes. Only the blind algorithm needs to be implemented in the case of a passive eavesdropper because it achieves sufficient performances and does not require adding pilot symbols as the semi-blind algorithm. In the case of an active eavesdropper, based on its robustness in the low region of the Signal-to-Noise Ratio (SNR), the semi-blind algorithm is considered by trading four pilot symbols and only requiring the feedback for channel estimation processes in order to overcome the increase in noise in the legitimate receiver. The results show that the blind or semi-blind algorithms outperform the conventional algorithm in terms of Mean Square Error (MSE), Bit Error Rate (BER) and security gap ([Formula: see text]). In addition, it has been shown that the blind or semi-blind algorithms are less sensitive to high SI and self-jamming interference power levels imposed by secured FD transmission than the conventional algorithms without feedback. |
format | Online Article Text |
id | pubmed-9320099 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93200992022-07-27 Secrecy Coding Analysis of Short-Packet Full-Duplex Transmissions with Joint Iterative Channel Estimation and Decoding Processes Vuong, Bao Quoc Gautier, Roland Fiche, Anthony Marazin, Mélanie Despina-Stoian, Cristina Sensors (Basel) Article This paper studies the secrecy coding analysis achieved by the self-jamming technique in the presence of an eavesdropper by considering a short-packet Full-Duplex (FD) transmission developed based on iterative blind or semi-blind channel estimation and advanced decoding algorithms. Indeed, the legitimate receiver and eavesdropper can simultaneously receive the intended signal from the transmitter and broadcast a self-jamming or jamming signal to the others. Unlike other conventional techniques without feedback, the blind or semi-blind algorithm applied at the legitimate receiver can simultaneously estimate, firstly, the Self-Interference (SI) channel to cancel the SI component and, secondly, estimate the propagation channel, then decode the intended messages by using 5G Quasi-Cyclic Low-Density Parity Check (QC-LDPC) codes. Taking into account the passive eavesdropper case, the blind channel estimation with a feedback scheme is applied, where the temporary estimation of the intended channel and the decoded message are fed back to improve both the channel estimation and the decoding processes. Only the blind algorithm needs to be implemented in the case of a passive eavesdropper because it achieves sufficient performances and does not require adding pilot symbols as the semi-blind algorithm. In the case of an active eavesdropper, based on its robustness in the low region of the Signal-to-Noise Ratio (SNR), the semi-blind algorithm is considered by trading four pilot symbols and only requiring the feedback for channel estimation processes in order to overcome the increase in noise in the legitimate receiver. The results show that the blind or semi-blind algorithms outperform the conventional algorithm in terms of Mean Square Error (MSE), Bit Error Rate (BER) and security gap ([Formula: see text]). In addition, it has been shown that the blind or semi-blind algorithms are less sensitive to high SI and self-jamming interference power levels imposed by secured FD transmission than the conventional algorithms without feedback. MDPI 2022-07-14 /pmc/articles/PMC9320099/ /pubmed/35890937 http://dx.doi.org/10.3390/s22145257 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vuong, Bao Quoc Gautier, Roland Fiche, Anthony Marazin, Mélanie Despina-Stoian, Cristina Secrecy Coding Analysis of Short-Packet Full-Duplex Transmissions with Joint Iterative Channel Estimation and Decoding Processes |
title | Secrecy Coding Analysis of Short-Packet Full-Duplex Transmissions with Joint Iterative Channel Estimation and Decoding Processes |
title_full | Secrecy Coding Analysis of Short-Packet Full-Duplex Transmissions with Joint Iterative Channel Estimation and Decoding Processes |
title_fullStr | Secrecy Coding Analysis of Short-Packet Full-Duplex Transmissions with Joint Iterative Channel Estimation and Decoding Processes |
title_full_unstemmed | Secrecy Coding Analysis of Short-Packet Full-Duplex Transmissions with Joint Iterative Channel Estimation and Decoding Processes |
title_short | Secrecy Coding Analysis of Short-Packet Full-Duplex Transmissions with Joint Iterative Channel Estimation and Decoding Processes |
title_sort | secrecy coding analysis of short-packet full-duplex transmissions with joint iterative channel estimation and decoding processes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320099/ https://www.ncbi.nlm.nih.gov/pubmed/35890937 http://dx.doi.org/10.3390/s22145257 |
work_keys_str_mv | AT vuongbaoquoc secrecycodinganalysisofshortpacketfullduplextransmissionswithjointiterativechannelestimationanddecodingprocesses AT gautierroland secrecycodinganalysisofshortpacketfullduplextransmissionswithjointiterativechannelestimationanddecodingprocesses AT ficheanthony secrecycodinganalysisofshortpacketfullduplextransmissionswithjointiterativechannelestimationanddecodingprocesses AT marazinmelanie secrecycodinganalysisofshortpacketfullduplextransmissionswithjointiterativechannelestimationanddecodingprocesses AT despinastoiancristina secrecycodinganalysisofshortpacketfullduplextransmissionswithjointiterativechannelestimationanddecodingprocesses |