Cargando…

Halogen-Doped Carbon Dots: Synthesis, Application, and Prospects

Carbon dots (CDs) have many advantages, such as tunable photoluminescence, large two-photon absorption cross-sections, easy functionalization, low toxicity, chemical inertness, good dispersion, and biocompatibility. Halogen doping further improves the optical and physicochemical properties of CDs, e...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Kun, Wen, Yanmei, Kang, Xinhuang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320250/
https://www.ncbi.nlm.nih.gov/pubmed/35889495
http://dx.doi.org/10.3390/molecules27144620
Descripción
Sumario:Carbon dots (CDs) have many advantages, such as tunable photoluminescence, large two-photon absorption cross-sections, easy functionalization, low toxicity, chemical inertness, good dispersion, and biocompatibility. Halogen doping further improves the optical and physicochemical properties of CDs, extending their applications in fluorescence sensors, biomedicine, photocatalysis, anti-counterfeiting encryption, and light-emitting diodes. This review briefly describes the preparation of CDs via the “top-down” and “bottom-up” approaches and discusses the preparation methods and applications of halogen (fluorine, chlorine, bromine, and iodine)-doped CDs. The main challenges of CDs in the future are the elucidation of the luminescence mechanism, fine doping with elements (proportion, position, etc.), and their incorporation in practical devices.