Cargando…

A New Conformal Map for Polynomial Chaos Applied to Direction-of-Arrival Estimation via UCA Root-MUSIC

The effects of random array deformations on Direction-of-Arrival (DOA) estimation with root-Multiple Signal Classification for uniform circular arrays (UCA root-MUSIC) are characterized by a conformally mapped generalized Polynomial Chaos (gPC) algorithm. The studied random deformations of the array...

Descripción completa

Detalles Bibliográficos
Autores principales: Van Brandt, Seppe, Verhaevert, Jo, Van Hecke, Tanja, Rogier, Hendrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320256/
https://www.ncbi.nlm.nih.gov/pubmed/35890908
http://dx.doi.org/10.3390/s22145229
_version_ 1784755748687839232
author Van Brandt, Seppe
Verhaevert, Jo
Van Hecke, Tanja
Rogier, Hendrik
author_facet Van Brandt, Seppe
Verhaevert, Jo
Van Hecke, Tanja
Rogier, Hendrik
author_sort Van Brandt, Seppe
collection PubMed
description The effects of random array deformations on Direction-of-Arrival (DOA) estimation with root-Multiple Signal Classification for uniform circular arrays (UCA root-MUSIC) are characterized by a conformally mapped generalized Polynomial Chaos (gPC) algorithm. The studied random deformations of the array are elliptical and are described by different Beta distributions. To successfully capture the erratic deviations in DOA estimates that occur at larger deformations, specifically at the edges of the distributions, a novel conformal map is introduced, based on the hyperbolic tangent function. The application of this new map is compared to regular gPC and Monte Carlo sampling as a reference. A significant increase in convergence rate is observed. The numerical experiments show that the UCA root-MUSIC algorithm is robust to the considered array deformations, since the resulting errors on the DOA estimates are limited to only 2 to 3 degrees in most cases.
format Online
Article
Text
id pubmed-9320256
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93202562022-07-27 A New Conformal Map for Polynomial Chaos Applied to Direction-of-Arrival Estimation via UCA Root-MUSIC Van Brandt, Seppe Verhaevert, Jo Van Hecke, Tanja Rogier, Hendrik Sensors (Basel) Article The effects of random array deformations on Direction-of-Arrival (DOA) estimation with root-Multiple Signal Classification for uniform circular arrays (UCA root-MUSIC) are characterized by a conformally mapped generalized Polynomial Chaos (gPC) algorithm. The studied random deformations of the array are elliptical and are described by different Beta distributions. To successfully capture the erratic deviations in DOA estimates that occur at larger deformations, specifically at the edges of the distributions, a novel conformal map is introduced, based on the hyperbolic tangent function. The application of this new map is compared to regular gPC and Monte Carlo sampling as a reference. A significant increase in convergence rate is observed. The numerical experiments show that the UCA root-MUSIC algorithm is robust to the considered array deformations, since the resulting errors on the DOA estimates are limited to only 2 to 3 degrees in most cases. MDPI 2022-07-13 /pmc/articles/PMC9320256/ /pubmed/35890908 http://dx.doi.org/10.3390/s22145229 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Van Brandt, Seppe
Verhaevert, Jo
Van Hecke, Tanja
Rogier, Hendrik
A New Conformal Map for Polynomial Chaos Applied to Direction-of-Arrival Estimation via UCA Root-MUSIC
title A New Conformal Map for Polynomial Chaos Applied to Direction-of-Arrival Estimation via UCA Root-MUSIC
title_full A New Conformal Map for Polynomial Chaos Applied to Direction-of-Arrival Estimation via UCA Root-MUSIC
title_fullStr A New Conformal Map for Polynomial Chaos Applied to Direction-of-Arrival Estimation via UCA Root-MUSIC
title_full_unstemmed A New Conformal Map for Polynomial Chaos Applied to Direction-of-Arrival Estimation via UCA Root-MUSIC
title_short A New Conformal Map for Polynomial Chaos Applied to Direction-of-Arrival Estimation via UCA Root-MUSIC
title_sort new conformal map for polynomial chaos applied to direction-of-arrival estimation via uca root-music
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320256/
https://www.ncbi.nlm.nih.gov/pubmed/35890908
http://dx.doi.org/10.3390/s22145229
work_keys_str_mv AT vanbrandtseppe anewconformalmapforpolynomialchaosappliedtodirectionofarrivalestimationviaucarootmusic
AT verhaevertjo anewconformalmapforpolynomialchaosappliedtodirectionofarrivalestimationviaucarootmusic
AT vanhecketanja anewconformalmapforpolynomialchaosappliedtodirectionofarrivalestimationviaucarootmusic
AT rogierhendrik anewconformalmapforpolynomialchaosappliedtodirectionofarrivalestimationviaucarootmusic
AT vanbrandtseppe newconformalmapforpolynomialchaosappliedtodirectionofarrivalestimationviaucarootmusic
AT verhaevertjo newconformalmapforpolynomialchaosappliedtodirectionofarrivalestimationviaucarootmusic
AT vanhecketanja newconformalmapforpolynomialchaosappliedtodirectionofarrivalestimationviaucarootmusic
AT rogierhendrik newconformalmapforpolynomialchaosappliedtodirectionofarrivalestimationviaucarootmusic