Cargando…
Using Algorithmic Transformations and Sensitivity Analysis to Unleash Approximations in CNNs at the Edge
Previous studies have demonstrated that, up to a certain degree, Convolutional Neural Networks (CNNs) can tolerate arithmetic approximations. Nonetheless, perturbations must be applied judiciously, to constrain their impact on accuracy. This is a challenging task, since the implementation of inexact...
Autores principales: | Ponzina, Flavio, Ansaloni, Giovanni, Peón-Quirós, Miguel, Atienza, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320279/ https://www.ncbi.nlm.nih.gov/pubmed/35888960 http://dx.doi.org/10.3390/mi13071143 |
Ejemplares similares
-
An Accelerator Design Using a MTCA Decomposition Algorithm for CNNs
por: Zhao, Yunping, et al.
Publicado: (2020) -
CTMLP: Can MLPs replace CNNs or transformers for COVID-19 diagnosis?
por: Sun, Junding, et al.
Publicado: (2023) -
ECG Data Analysis with Denoising Approach and Customized CNNs
por: Mishra, Abhinav, et al.
Publicado: (2022) -
Dynamic memory management for embedded systems
por: Atienza Alonso, David, et al.
Publicado: (2015) -
The Design of Approximation Algorithms
por: Williamson, David P, et al.
Publicado: (2011)