Cargando…

A pan-cancer analysis confirms PTPN11’s potential as a prognostic and immunological biomarker

Protein tyrosine phosphatase, non-receptor type 11 (PTPN11) is a multifunctional tyrosine phosphatase and has a significant part in many types of tumors. As of yet, neither the expression profile of PTPN11 nor its significance in pan-cancer diagnosis has been clarified. With the assistance of The Ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Yapeng, Duan, Haixia, Su, Ailing, Xu, Liran, Lai, Baochang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320542/
https://www.ncbi.nlm.nih.gov/pubmed/35802774
http://dx.doi.org/10.18632/aging.204171
Descripción
Sumario:Protein tyrosine phosphatase, non-receptor type 11 (PTPN11) is a multifunctional tyrosine phosphatase and has a significant part in many types of tumors. As of yet, neither the expression profile of PTPN11 nor its significance in pan-cancer diagnosis has been clarified. With the assistance of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we have comprehensively mapped the expression profiles, prognostic significance, genetic alteration, phosphorylation status, infiltration of immune cells, and functional properties of PTPN11 in 33 human tumors. There was an inconsistent expression of PTPN11 in different tumors, and the alteration of PTPN11 expression predicted the survival outcomes of cancer patients. A significant association was found between the genetic alteration levels of PTPN11 and some tumor predictions. Besides, the reduced PTPN11 phosphorylation levels were observed in breast cancer, clear cell RCC, head and neck carcinoma, and lung adenocarcinoma (LUAD). Furthermore, there was a significant association between PTPN11 expression and infiltration of cancer-associated fibroblasts and endothelial cells, along with tumor mutation burden, microsatellite instability, mismatch repair genes, and immunoregulators. Finally, pathway enrichment analysis demonstrated that PTPN11-associated terms and pathways were involved in malignancy. Taken together, PTPN11 may become a new biomarker and target for cancer therapy.