Cargando…

Long non-coding RNA H19 contributes to spinal cord ischemia/reperfusion injury through increasing neuronal pyroptosis by miR-181a-5p/HMGB1 axis

Pyroptosis, a programmed inflammatory necrotizing cell death, is likely involved in spinal cord ischemia-reperfusion (SCI/R) injury, but the mechanisms initiating driving neuronal pyroptosis must be further revealed. The aim of this study is to unravel the mechanism of long non-coding RNA (lncRNA) H...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Lili, Wang, Dan, Alexander, Hildrich Yasmal, Ren, Xiaoyan, Ma, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320554/
https://www.ncbi.nlm.nih.gov/pubmed/35793244
http://dx.doi.org/10.18632/aging.204160
Descripción
Sumario:Pyroptosis, a programmed inflammatory necrotizing cell death, is likely involved in spinal cord ischemia-reperfusion (SCI/R) injury, but the mechanisms initiating driving neuronal pyroptosis must be further revealed. The aim of this study is to unravel the mechanism of long non-coding RNA (lncRNA) H19 during SCI/R. SCI/R model was induced in C57BL/6 mice by blocking the aortic arch in vivo, and oxygen-glucose deprivation/reperfusion (OGD/R) injury model of PC12 cells was established in vitro. Our results showed that H19 and HMGB1 expression was upregulated, while miR-181a-5p was downregulated in the SCI/R mice and OGD/R-treated PC12 cells. SCI/R induced pathological damage, pyroptosis and inflammation compared with the sham group. H19 acted as a molecular sponge to suppress miR-181a-5p, and HMGB1 was identified as a direct target of miR-181a-5p. MiR-181a-5p overexpression inhibited the increase of IL-1β, IL-18 and TNF-α production and NLRP3, ASC, and Cleaved-caspase-1 expression in OGD/R-treated PC12 cells; while miR-181a-5p silencing exerted opposite effects. HMGB1 overexpression reversed H19 knockdown-mediated the inhibition of pyroptosis and inflammation in OGD/R-treated PC12 cells. In vivo, H19 knockdown promoted the hind limb motor function recovery and alleviated the pathological damage, pyroptosis and inflammation induced by SCI/R. LncRNA H19/miR-181a-5p/HMGB1 pathway contributes to pyroptosis via activating caspase1 signaling during SCI/R, suggesting that this axis may be a potent therapeutic target in SCI/R.