Cargando…
Melanoma Detection Using XGB Classifier Combined with Feature Extraction and K-Means SMOTE Techniques
Melanoma, a very severe form of skin cancer, spreads quickly and has a high mortality rate if not treated early. Recently, machine learning, deep learning, and other related technologies have been successfully applied to computer-aided diagnostic tasks of skin lesions. However, some issues in terms...
Autores principales: | Chang, Chih-Chi, Li, Yu-Zhen, Wu, Hui-Ching, Tseng, Ming-Hseng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320570/ https://www.ncbi.nlm.nih.gov/pubmed/35885650 http://dx.doi.org/10.3390/diagnostics12071747 |
Ejemplares similares
-
Malicious Domain Detection Based on K-means and SMOTE
por: Wang, Qing, et al.
Publicado: (2020) -
SMOTE-CD: SMOTE for compositional data
por: Nguyen, Teo, et al.
Publicado: (2023) -
Ensemble stacking rockburst prediction model based on Yeo–Johnson, K-means SMOTE, and optimal rockburst feature dimension determination
por: Sun, Lijun, et al.
Publicado: (2022) -
Computer-Aided Lung Nodule Recognition by SVM Classifier Based on Combination of Random Undersampling and SMOTE
por: Sui, Yuan, et al.
Publicado: (2015) -
XGB-DrugPred: computational prediction of druggable proteins using eXtreme gradient boosting and optimized features set
por: Sikander, Rahu, et al.
Publicado: (2022)